Title: | Distributions for Generalized Additive Models for Location Scale and Shape |
---|---|
Description: | A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively. |
Authors: | Mikis Stasinopoulos [aut, cre, cph] , Robert Rigby [aut] , Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Gillian Heller [ctb] , Fernanda De Bastiani [ctb] , Raydonal Ospina [ctb] , Nicoletta Motpan [ctb], Fiona McElduff [ctb], Majid Djennad [ctb], Marco Enea [ctb], Alexios Ghalanos [ctb], Christos Argyropoulos [ctb], Almond Stöcker [ctb] , Jens Lichter [ctb], Stanislaus Stadlmann [ctb] , Achim Zeileis [ctb] |
Maintainer: | Mikis Stasinopoulos <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 6.1-6 |
Built: | 2025-01-20 14:19:58 UTC |
Source: | https://github.com/gamlss-dev/gamlss.dist |
A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively.
The DESCRIPTION file:
Package: | gamlss.dist |
Title: | Distributions for Generalized Additive Models for Location Scale and Shape |
Version: | 6.1-6 |
Date: | 2024-21-12 |
Authors@R: | c(person("Mikis", "Stasinopoulos", role = c("aut", "cre", "cph"), email = "[email protected]", comment = c(ORCID = "0000-0003-2407-5704")), person("Robert", "Rigby", role = "aut", email = "[email protected]", comment = c(ORCID = "0000-0003-3853-1707")), person("Calliope", "Akantziliotou", role = "ctb"), person("Vlasios", "Voudouris", role = "ctb"), person("Gillian", "Heller", role = "ctb", comment = c(ORCID = "0000-0003-1270-1499")), person("Fernanda", "De Bastiani", role = "ctb", comment = c(ORCID = "0000-0001-8532-639X")), person("Raydonal", "Ospina", role = "ctb", email= "[email protected]", comment = c(ORCID = "0000-0002-9884-9090")), person("Nicoletta", "Motpan", role = "ctb"), person("Fiona", "McElduff", role = "ctb"), person("Majid", "Djennad", role = "ctb"), person("Marco", "Enea", role = "ctb"), person("Alexios", "Ghalanos", role = "ctb"), person("Christos", "Argyropoulos", role = "ctb"), person("Almond", "Stöcker", role = "ctb", comment = c(ORCID = "0000-0001-9160-2397")), person("Jens", "Lichter", role = "ctb"), person("Stanislaus", "Stadlmann", role = "ctb", comment = c(ORCID = "0000-0001-6542-6342")), person("Achim", "Zeileis", role = "ctb", email = "[email protected]", comment = c(ORCID = "0000-0003-0918-3766")) ) |
Description: | A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively. |
License: | GPL-2 | GPL-3 |
URL: | https://www.gamlss.com/ |
BugReports: | https://github.com/gamlss-dev/gamlss.dist/issues |
Depends: | R (>= 3.5.0) |
Imports: | MASS, graphics, stats, methods, grDevices |
Suggests: | distributions3 (>= 0.2.1) |
Encoding: | UTF-8 |
Repository: | https://gamlss-dev.r-universe.dev |
RemoteUrl: | https://github.com/gamlss-dev/gamlss.dist |
RemoteRef: | HEAD |
RemoteSha: | 1ee5eccdda47fcff69525592cd097cd1b9ee9896 |
Author: | Mikis Stasinopoulos [aut, cre, cph] (<https://orcid.org/0000-0003-2407-5704>), Robert Rigby [aut] (<https://orcid.org/0000-0003-3853-1707>), Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Gillian Heller [ctb] (<https://orcid.org/0000-0003-1270-1499>), Fernanda De Bastiani [ctb] (<https://orcid.org/0000-0001-8532-639X>), Raydonal Ospina [ctb] (<https://orcid.org/0000-0002-9884-9090>), Nicoletta Motpan [ctb], Fiona McElduff [ctb], Majid Djennad [ctb], Marco Enea [ctb], Alexios Ghalanos [ctb], Christos Argyropoulos [ctb], Almond Stöcker [ctb] (<https://orcid.org/0000-0001-9160-2397>), Jens Lichter [ctb], Stanislaus Stadlmann [ctb] (<https://orcid.org/0000-0001-6542-6342>), Achim Zeileis [ctb] (<https://orcid.org/0000-0003-0918-3766>) |
Maintainer: | Mikis Stasinopoulos <[email protected]> |
Index of help topics:
BB Beta Binomial Distribution For Fitting a GAMLSS Model BCCG Box-Cox Cole and Green distribution (or Box-Cox normal) for fitting a GAMLSS BCPE Box-Cox Power Exponential distribution for fitting a GAMLSS BCT Box-Cox t distribution for fitting a GAMLSS BE The beta distribution for fitting a GAMLSS BEINF The beta inflated distribution for fitting a GAMLSS BEOI The one-inflated beta distribution for fitting a GAMLSS BEZI The zero-inflated beta distribution for fitting a GAMLSS BI Binomial distribution for fitting a GAMLSS BNB Beta Negative Binomial distribution for fitting a GAMLSS DBI The Double binomial distribution DBURR12 The Discrete Burr type XII distribution for fitting a GAMLSS model DEL The Delaporte distribution for fitting a GAMLSS model DPO The Double Poisson distribution EGB2 The exponential generalized Beta type 2 distribution for fitting a GAMLSS EXP Exponential distribution for fitting a GAMLSS GA Gamma distribution for fitting a GAMLSS GAF The Gamma distribution family GAMLSS Create a GAMLSS Distribution GB1 The generalized Beta type 1 distribution for fitting a GAMLSS GB2 The generalized Beta type 2 and generalized Pareto distributions for fitting a GAMLSS GEOM Geometric distribution for fitting a GAMLSS model GG Generalized Gamma distribution for fitting a GAMLSS GIG Generalized Inverse Gaussian distribution for fitting a GAMLSS GPO The generalised Poisson distribution GT The generalized t distribution for fitting a GAMLSS GU The Gumbel distribution for fitting a GAMLSS IG Inverse Gaussian distribution for fitting a GAMLSS IGAMMA Inverse Gamma distribution for fitting a GAMLSS JSU The Johnson's Su distribution for fitting a GAMLSS JSUo The original Johnson's Su distribution for fitting a GAMLSS LG Logarithmic and zero adjusted logarithmic distributions for fitting a GAMLSS model LNO Log Normal distribution for fitting in GAMLSS LO Logistic distribution for fitting a GAMLSS LOGITNO Logit Normal distribution for fitting in GAMLSS LQNO Normal distribution with a specific mean and variance relationship for fitting a GAMLSS model MN3 Multinomial distribution in GAMLSS NBF Negative Binomial Family distribution for fitting a GAMLSS NBI Negative Binomial type I distribution for fitting a GAMLSS NBII Negative Binomial type II distribution for fitting a GAMLSS NET Normal Exponential t distribution (NET) for fitting a GAMLSS NO Normal distribution for fitting a GAMLSS NO2 Normal distribution (with variance as sigma parameter) for fitting a GAMLSS NOF Normal distribution family for fitting a GAMLSS PARETO2 Pareto distributions for fitting in GAMLSS PE Power Exponential distribution for fitting a GAMLSS PIG The Poisson-inverse Gaussian distribution for fitting a GAMLSS model PO Poisson distribution for fitting a GAMLSS model RG The Reverse Gumbel distribution for fitting a GAMLSS RGE Reverse generalized extreme family distribution for fitting a GAMLSS SEP The Skew Power exponential (SEP) distribution for fitting a GAMLSS SEP1 The Skew exponential power type 1-4 distribution for fitting a GAMLSS SHASH The Sinh-Arcsinh (SHASH) distribution for fitting a GAMLSS SI The Sichel dustribution for fitting a GAMLSS model SICHEL The Sichel distribution for fitting a GAMLSS model SIMPLEX The simplex distribution for fitting a GAMLSS SN1 Skew Normal Type 1 distribution for fitting a GAMLSS SN2 Skew Normal Type 2 distribution for fitting a GAMLSS ST1 The skew t distributions, type 1 to 5 TF t family distribution for fitting a GAMLSS WARING Waring distribution for fitting a GAMLSS model WEI Weibull distribution for fitting a GAMLSS WEI2 A specific parameterization of the Weibull distribution for fitting a GAMLSS WEI3 A specific parameterization of the Weibull distribution for fitting a GAMLSS YULE Yule distribution for fitting a GAMLSS model ZABB Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS ZABI Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS ZAGA The zero adjusted Gamma distribution for fitting a GAMLSS model ZAIG The zero adjusted Inverse Gaussian distribution for fitting a GAMLSS model ZANBI Zero inflated and zero adjusted negative binomial distributions for fitting a GAMLSS model ZAP Zero adjusted poisson distribution for fitting a GAMLSS model ZIP Zero inflated poisson distribution for fitting a GAMLSS model ZIP2 Zero inflated poisson distribution for fitting a GAMLSS model ZIPF The zipf and zero adjusted zipf distributions for fitting a GAMLSS model checklink Set the Right Link Function for Specified Parameter and Distribution count_1_31 A set of functions to plot gamlss.family distributions exGAUS The ex-Gaussian distribution flexDist Non-parametric pdf from limited information data gamlss.dist-package Distributions for Generalized Additive Models for Location Scale and Shape gamlss.family Family Objects for fitting a GAMLSS model gen.Family Functions to generate log and logit distributions from existing continuous gamlss.family distributions hazardFun Hazard functions for gamlss.family distributions make.link.gamlss Create a Link for GAMLSS families momentSK Sample and theoretical Moment and Centile Skewness and Kurtosis Functions
Mikis Stasinopoulos [aut, cre, cph] (<https://orcid.org/0000-0003-2407-5704>), Robert Rigby [aut] (<https://orcid.org/0000-0003-3853-1707>), Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Gillian Heller [ctb] (<https://orcid.org/0000-0003-1270-1499>), Fernanda De Bastiani [ctb] (<https://orcid.org/0000-0001-8532-639X>), Raydonal Ospina [ctb] (<https://orcid.org/0000-0002-9884-9090>), Nicoletta Motpan [ctb], Fiona McElduff [ctb], Majid Djennad [ctb], Marco Enea [ctb], Alexios Ghalanos [ctb], Christos Argyropoulos [ctb], Almond Stöcker [ctb] (<https://orcid.org/0000-0001-9160-2397>), Jens Lichter [ctb], Stanislaus Stadlmann [ctb] (<https://orcid.org/0000-0001-6542-6342>), Achim Zeileis [ctb] (<https://orcid.org/0000-0003-0918-3766>)
Maintainer: Mikis Stasinopoulos <[email protected]>
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
# pdf plot plot(function(y) dSICHEL(y, mu=10, sigma = 0.1 , nu=1 ), from=0, to=30, n=30+1, type="h") # cdf plot PPP <- par(mfrow=c(2,1)) plot(function(y) pSICHEL(y, mu=10, sigma =0.1, nu=1 ), from=0, to=30, n=30+1, type="h") # cdf cdf<-pSICHEL(0:30, mu=10, sigma=0.1, nu=1) sfun1 <- stepfun(1:30, cdf, f = 0) plot(sfun1, xlim=c(0,30), main="cdf(x)") par(PPP)
# pdf plot plot(function(y) dSICHEL(y, mu=10, sigma = 0.1 , nu=1 ), from=0, to=30, n=30+1, type="h") # cdf plot PPP <- par(mfrow=c(2,1)) plot(function(y) pSICHEL(y, mu=10, sigma =0.1, nu=1 ), from=0, to=30, n=30+1, type="h") # cdf cdf<-pSICHEL(0:30, mu=10, sigma=0.1, nu=1) sfun1 <- stepfun(1:30, cdf, f = 0) plot(sfun1, xlim=c(0,30), main="cdf(x)") par(PPP)
This function defines the beta binomial distribution, a two parameter distribution, for a gamlss.family
object to be used in a
GAMLSS fitting using the function gamlss()
BB(mu.link = "logit", sigma.link = "log") dBB(x, mu = 0.5, sigma = 1, bd = 10, log = FALSE) pBB(q, mu = 0.5, sigma = 1, bd = 10, lower.tail = TRUE, log.p = FALSE) qBB(p, mu = 0.5, sigma = 1, bd = 10, lower.tail = TRUE, log.p = FALSE) rBB(n, mu = 0.5, sigma = 1, bd = 10)
BB(mu.link = "logit", sigma.link = "log") dBB(x, mu = 0.5, sigma = 1, bd = 10, log = FALSE) pBB(q, mu = 0.5, sigma = 1, bd = 10, lower.tail = TRUE, log.p = FALSE) qBB(p, mu = 0.5, sigma = 1, bd = 10, lower.tail = TRUE, log.p = FALSE) rBB(n, mu = 0.5, sigma = 1, bd = 10)
mu.link |
Defines the |
sigma.link |
Defines the |
mu |
vector of positive probabilities |
sigma |
the dispersion parameter |
bd |
vector of binomial denominators |
p |
vector of probabilities |
x , q
|
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for beta binomial distribution.
for ,
and
, see pp. 523-524 of Rigby et al. (2019). . For
and
the distribution is uniform.
Returns a gamlss.family
object which can be used to fit a Beta Binomial distribution in the gamlss()
function.
The functions pBB
and qBB
are calculated using a laborious procedure so they are relatively slow.
The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures.
The parameter mu
represents a probability parameter with limits .
is the mean of the distribution where n is the binomial denominator.
is the standard deviation of the
Beta Binomial distribution. Hence
is a dispersion type parameter
Mikis Stasinopoulos, Bob Rigby and Kalliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
# BB()# gives information about the default links for the Beta Binomial distribution #plot the pdf plot(function(y) dBB(y, mu = .5, sigma = 1, bd =40), from=0, to=40, n=40+1, type="h") #calculate the cdf and plotting it ppBB <- pBB(seq(from=0, to=40), mu=.2 , sigma=3, bd=40) plot(0:40,ppBB, type="h") #calculating quantiles and plotting them qqBB <- qBB(ppBB, mu=.2 , sigma=3, bd=40) plot(qqBB~ ppBB) # when the argument fast is useful p <- pBB(c(0,1,2,3,4,5), mu=.01 , sigma=1, bd=5) qBB(p, mu=.01 , sigma=1, bd=5) # 0 1 1 2 3 5 qBB(p, mu=.01 , sigma=1, bd=5) # 0 1 2 3 4 5 # generate random sample tN <- table(Ni <- rBB(1000, mu=.2, sigma=1, bd=20)) r <- barplot(tN, col='lightblue') # fitting a model # library(gamlss) #data(aep) # fits a Beta-Binomial model #h<-gamlss(y~ward+loglos+year, sigma.formula=~year+ward, family=BB, data=aep)
# BB()# gives information about the default links for the Beta Binomial distribution #plot the pdf plot(function(y) dBB(y, mu = .5, sigma = 1, bd =40), from=0, to=40, n=40+1, type="h") #calculate the cdf and plotting it ppBB <- pBB(seq(from=0, to=40), mu=.2 , sigma=3, bd=40) plot(0:40,ppBB, type="h") #calculating quantiles and plotting them qqBB <- qBB(ppBB, mu=.2 , sigma=3, bd=40) plot(qqBB~ ppBB) # when the argument fast is useful p <- pBB(c(0,1,2,3,4,5), mu=.01 , sigma=1, bd=5) qBB(p, mu=.01 , sigma=1, bd=5) # 0 1 1 2 3 5 qBB(p, mu=.01 , sigma=1, bd=5) # 0 1 2 3 4 5 # generate random sample tN <- table(Ni <- rBB(1000, mu=.2, sigma=1, bd=20)) r <- barplot(tN, col='lightblue') # fitting a model # library(gamlss) #data(aep) # fits a Beta-Binomial model #h<-gamlss(y~ward+loglos+year, sigma.formula=~year+ward, family=BB, data=aep)
The function BCCG
defines the Box-Cox Cole and Green distribution (Box-Cox normal), a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dBCCG
, pBCCG
, qBCCG
and rBCCG
define the density, distribution function, quantile function and random generation for the specific parameterization of the Box-Cox Cole and Green distribution.
[The function BCCGuntr()
is the original version of the function suitable only for the untruncated Box-Cox Cole and Green distribution
See Cole and Green (1992) and Rigby and Stasinopoulos (2003a, 2003b) for details.
The function BCCGo
is identical to BCCG
but with log link for mu.
BCCG(mu.link = "identity", sigma.link = "log", nu.link = "identity") BCCGo(mu.link = "log", sigma.link = "log", nu.link = "identity") BCCGuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity") dBCCG(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE) pBCCG(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) qBCCG(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) rBCCG(n, mu = 1, sigma = 0.1, nu = 1) dBCCGo(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE) pBCCGo(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) qBCCGo(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) rBCCGo(n, mu = 1, sigma = 0.1, nu = 1)
BCCG(mu.link = "identity", sigma.link = "log", nu.link = "identity") BCCGo(mu.link = "log", sigma.link = "log", nu.link = "identity") BCCGuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity") dBCCG(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE) pBCCG(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) qBCCG(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) rBCCG(n, mu = 1, sigma = 0.1, nu = 1) dBCCGo(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE) pBCCGo(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) qBCCGo(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) rBCCGo(n, mu = 1, sigma = 0.1, nu = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability distribution function of the untrucated Box-Cox Cole and Green distribution, BCCGuntr
, is defined as
where if then
else
,
for
,
,
and
.
The Box-Cox Cole and Green distribution, BCCG
, adjusts the above density for the
truncation resulting from the condition
. See Rigby and Stasinopoulos (2003a, 2003b) or pp. 439-441 of Rigby et al. (2019) for details.
BCCG()
returns a gamlss.family
object which can be used to fit a Cole and Green distribution in the gamlss()
function.
dBCCG()
gives the density, pBCCG()
gives the distribution
function, qBCCG()
gives the quantile function, and rBCCG()
generates random deviates.
The BCCGuntr
distribution may be unsuitable for some combinations of the parameters
(mainly for large )
where the integrating constant is less than 0.99. A warning will be given if this is the case.
The BCCG distribution is suitable for all combinations of the distributional parameters within
their range [i.e.
,
,
]
is the median of the distribution
is approximately the coefficient of variation (for small values of
),
and
controls the skewness.
The BCCG
distribution is suitable for all combinations of the parameters within their ranges
[i.e. ]
Mikis Stasinopoulos, Bob Rigby and Kalliope Akantziliotou
Cole, T. J. and Green, P. J. (1992) Smoothing reference centile curves: the LMS method and penalized likelihood, Statist. Med. 11, 1305–1319
Rigby, R. A. and Stasinopoulos, D. M. (2004). Smooth centile curves for skew and kurtotic data modelled using the Box-Cox Power Exponential distribution. Statistics in Medicine, 23: 3053-3076.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox t distribution in GAMLSS to mode skewnees and and kurtosis. Statistical Modelling, 6(3) :209. doi:10.1191/1471082X06st122oa
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/9780429298547 An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
BCCG() # gives information about the default links for the Cole and Green distribution # library(gamlss) #data(abdom) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCCG, data=abdom) #plot(h) plot(function(x) dBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20, main = "The BCCG density mu=5,sigma=.5,nu=-1") plot(function(x) pBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20, main = "The BCCG cdf mu=5, sigma=.5, nu=-1")
BCCG() # gives information about the default links for the Cole and Green distribution # library(gamlss) #data(abdom) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCCG, data=abdom) #plot(h) plot(function(x) dBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20, main = "The BCCG density mu=5,sigma=.5,nu=-1") plot(function(x) pBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20, main = "The BCCG cdf mu=5, sigma=.5, nu=-1")
This function defines the Box-Cox Power Exponential distribution, a four parameter distribution, for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
.
The functions dBCPE
,
pBCPE
, qBCPE
and rBCPE
define the density, distribution function, quantile function and random
generation for the Box-Cox Power Exponential distribution.
The function checkBCPE
(very old) can be used, typically when a BCPE model is fitted, to check whether there exit a turning point
of the distribution close to zero. It give the number of values of the response below their minimum turning point and also
the maximum probability of the lower tail below minimum turning point.
[The function Biventer()
is the original version of the function suitable only for the untruncated BCPE distribution.] See Rigby and Stasinopoulos (2003) for details.
The function BCPEo
is identical to BCPE
but with log link for mu.
BCPE(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") BCPEo(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "log") BCPEuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dBCPE(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE) pBCPE(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) qBCPE(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) rBCPE(n, mu = 5, sigma = 0.1, nu = 1, tau = 2) dBCPEo(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE) pBCPEo(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) qBCPEo(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) rBCPEo(n, mu = 5, sigma = 0.1, nu = 1, tau = 2) checkBCPE(obj = NULL, mu = 10, sigma = 0.1, nu = 0.5, tau = 2,...)
BCPE(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") BCPEo(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "log") BCPEuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dBCPE(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE) pBCPE(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) qBCPE(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) rBCPE(n, mu = 5, sigma = 0.1, nu = 1, tau = 2) dBCPEo(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE) pBCPEo(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) qBCPEo(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) rBCPEo(n, mu = 5, sigma = 0.1, nu = 1, tau = 2) checkBCPE(obj = NULL, mu = 10, sigma = 0.1, nu = 0.5, tau = 2,...)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of |
tau |
vector of |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
obj |
a gamlss BCPE family object |
... |
for extra arguments |
The probability density function of the untrucated Box Cox Power Exponential distribution, (BCPE.untr
), is defined as
where ,
where if
then
else
,
for
,
,
,
and
see pp. 450-451 of Rigby et al. (2019).
The Box-Cox Power Exponential, BCPE
, adjusts the above density for the
truncation resulting from the condition
. See Rigby and Stasinopoulos (2003) for details.
BCPE()
returns a gamlss.family
object which can be used to fit a Box Cox Power Exponential distribution in the gamlss()
function.
dBCPE()
gives the density, pBCPE()
gives the distribution
function, qBCPE()
gives the quantile function, and rBCPE()
generates random deviates.
The BCPE.untr
distribution may be unsuitable for some combinations of the parameters (mainly for large )
where the integrating constant is less than 0.99. A warning will be given if this is the case.
The BCPE
distribution is suitable for all combinations of the parameters within their ranges [i.e. ]
, is the median of the distribution,
is approximately the coefficient of variation (for small
and moderate
nu>0
),
controls the skewness and
the kurtosis of the distribution
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A. and Stasinopoulos, D. M. (2004). Smooth centile curves for skew and kurtotic data modelled using the Box-Cox Power Exponential distribution. Statistics in Medicine, 23: 3053-3076.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
# BCPE() # # library(gamlss) # data(abdom) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCPE, data=abdom) #plot(h) plot(function(x)dBCPE(x, mu=5,sigma=.5,nu=1, tau=3), 0.0, 15, main = "The BCPE density mu=5,sigma=.5,nu=1, tau=3") plot(function(x) pBCPE(x, mu=5,sigma=.5,nu=1, tau=3), 0.0, 15, main = "The BCPE cdf mu=5, sigma=.5, nu=1, tau=3")
# BCPE() # # library(gamlss) # data(abdom) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCPE, data=abdom) #plot(h) plot(function(x)dBCPE(x, mu=5,sigma=.5,nu=1, tau=3), 0.0, 15, main = "The BCPE density mu=5,sigma=.5,nu=1, tau=3") plot(function(x) pBCPE(x, mu=5,sigma=.5,nu=1, tau=3), 0.0, 15, main = "The BCPE cdf mu=5, sigma=.5, nu=1, tau=3")
The function BCT()
defines the Box-Cox t distribution, a four parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dBCT
,
pBCT
, qBCT
and rBCT
define the density, distribution function, quantile function and random
generation for the Box-Cox t distribution.
[The function BCTuntr()
is the original version of the function suitable only for the untruncated BCT distribution]. See Rigby and Stasinopoulos (2003) for details.
The function BCTo
is identical to BCT
but with log link for mu.
BCT(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") BCTo(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "log") BCTuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dBCT(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE) pBCT(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) qBCT(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) rBCT(n, mu = 5, sigma = 0.1, nu = 1, tau = 2) dBCTo(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE) pBCTo(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) qBCTo(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) rBCTo(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
BCT(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") BCTo(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "log") BCTuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dBCT(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE) pBCT(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) qBCT(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) rBCT(n, mu = 5, sigma = 0.1, nu = 1, tau = 2) dBCTo(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE) pBCTo(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) qBCTo(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE) rBCTo(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of |
tau |
vector of |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the untruncated Box-Cox t distribution, BCTuntr
, is given by
where if then
else
,
for
,
,
,
and
see pp. 450-451 of Rigby et al. (2019).
The Box-Cox t distribution, BCT
, adjusts the above density for the
truncation resulting from the condition
. See Rigby and Stasinopoulos (2003) for details.
BCT()
returns a gamlss.family
object which can be used to fit a Box Cox-t distribution in the gamlss()
function.
dBCT()
gives the density, pBCT()
gives the distribution
function, qBCT()
gives the quantile function, and rBCT()
generates random deviates.
The use BCTuntr
distribution may be unsuitable for some combinations of the parameters (mainly for large )
where the integrating constant is less than 0.99. A warning will be given if this is the case.
The BCT
distribution is suitable for all combinations of the parameters within their ranges
[i.e. ]
is the median of the distribution,
is approximate the coefficient of variation (for small
and moderate
nu>0
and moderate or large ),
controls the skewness and
the kurtosis of the distribution
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox t distribution in GAMLSS to mode skewnees and and kurtosis. Statistical Modelling 6(3):200. doi:10.1191/1471082X06st122oa.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
BCT() # gives information about the default links for the Box Cox t distribution # library(gamlss) #data(abdom) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCT, data=abdom) # #plot(h) plot(function(x)dBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20, main = "The BCT density mu=5,sigma=.5,nu=1, tau=2") plot(function(x) pBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20, main = "The BCT cdf mu=5, sigma=.5, nu=1, tau=2")
BCT() # gives information about the default links for the Box Cox t distribution # library(gamlss) #data(abdom) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCT, data=abdom) # #plot(h) plot(function(x)dBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20, main = "The BCT density mu=5,sigma=.5,nu=1, tau=2") plot(function(x) pBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20, main = "The BCT cdf mu=5, sigma=.5, nu=1, tau=2")
The functions BE()
and BEo()
define the beta distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. BE()
has mean equal to the parameter mu
and sigma
as scale parameter, see below. BEo()
is the original parameterizations of the beta distribution as in dbeta()
with
shape1
=mu and shape2
=sigma.
The functions dBE
and dBEo
, pBE
and pBEo
, qBE
and qBEo
and finally rBE
and rBE
define the density, distribution function, quantile function and random
generation for the BE
and BEo
parameterizations respectively of the beta distribution.
BE(mu.link = "logit", sigma.link = "logit") dBE(x, mu = 0.5, sigma = 0.2, log = FALSE) pBE(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE) qBE(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE) rBE(n, mu = 0.5, sigma = 0.2) BEo(mu.link = "log", sigma.link = "log") dBEo(x, mu = 0.5, sigma = 0.2, log = FALSE) pBEo(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE) qBEo(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
BE(mu.link = "logit", sigma.link = "logit") dBE(x, mu = 0.5, sigma = 0.2, log = FALSE) pBE(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE) qBE(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE) rBE(n, mu = 0.5, sigma = 0.2) BEo(mu.link = "log", sigma.link = "log") dBEo(x, mu = 0.5, sigma = 0.2, log = FALSE) pBEo(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE) qBEo(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
mu.link |
the |
sigma.link |
the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The standard parametrization of the beta distribution is given as:
for ,
and
.
The first gamlss
implementation the beta distribution is called BEo
, and it is identical to the standard parametrization with
and
, see pp. 460-461 of Rigby et al. (2019):
for ,
and
. The problem with this parametrization is that with mean
it is not convenient for modelling the response y as function of the explanatory variables. The second parametrization,
BE
see pp. 461-463 of Rigby et al. (2019), is using
(of the standard parametrization) and it is more convenient because
now is the mean with variance equal to
. Note however that
and
.
BE()
and BEo()
return a gamlss.family
object which can be used to fit a beta distribution in the gamlss()
function.
Note that for BE
, mu
is the mean and sigma
a scale parameter contributing to the variance of y
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gamlss.family
, BE
, LOGITNO
, GB1
, BEINF
BE()# gives information about the default links for the beta distribution dat1<-rBE(100, mu=.3, sigma=.5) hist(dat1) #library(gamlss) # mod1<-gamlss(dat1~1,family=BE) # fits a constant for mu and sigma #fitted(mod1)[1] #fitted(mod1,"sigma")[1] plot(function(y) dBE(y, mu=.1 ,sigma=.5), 0.001, .999) plot(function(y) pBE(y, mu=.1 ,sigma=.5), 0.001, 0.999) plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999) plot(function(y) qBE(y, mu=.1 ,sigma=.5, lower.tail=FALSE), 0.001, .999) dat2<-rBEo(100, mu=1, sigma=2) #mod2<-gamlss(dat2~1,family=BEo) # fits a constant for mu and sigma #fitted(mod2)[1] #fitted(mod2,"sigma")[1]
BE()# gives information about the default links for the beta distribution dat1<-rBE(100, mu=.3, sigma=.5) hist(dat1) #library(gamlss) # mod1<-gamlss(dat1~1,family=BE) # fits a constant for mu and sigma #fitted(mod1)[1] #fitted(mod1,"sigma")[1] plot(function(y) dBE(y, mu=.1 ,sigma=.5), 0.001, .999) plot(function(y) pBE(y, mu=.1 ,sigma=.5), 0.001, 0.999) plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999) plot(function(y) qBE(y, mu=.1 ,sigma=.5, lower.tail=FALSE), 0.001, .999) dat2<-rBEo(100, mu=1, sigma=2) #mod2<-gamlss(dat2~1,family=BEo) # fits a constant for mu and sigma #fitted(mod2)[1] #fitted(mod2,"sigma")[1]
The function BEINF()
defines the beta inflated distribution, a four parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
.
The beta inflated is similar to the beta but allows zeros and ones as values for the response variable.
The two extra parameters model the probabilities at zero and one.
The functions BEINF0()
and BEINF1()
are three parameter beta inflated distributions allowing
zeros or ones only at the response respectively. BEINF0()
and BEINF1()
are re-parameterize versions
of the distributions BEZI
and BEOI
contributed to gamlss by Raydonal Ospina
(see Ospina and Ferrari (2010)).
The functions dBEINF
, pBEINF
, qBEINF
and rBEINF
define the density, distribution function,
quantile function and random
generation for the BEINF
parametrization of the beta inflated distribution.
The functions dBEINF0
, pBEINF0
, qBEINF0
and rBEINF0
define the density, distribution function,
quantile function and random
generation for the BEINF0
parametrization of the beta inflated at zero distribution.
The functions dBEINF1
, pBEINF1
, qBEINF1
and rBEINF1
define the density, distribution function,
quantile function and random
generation for the BEINF1
parametrization of the beta inflated at one distribution.
plotBEINF
, plotBEINF0
and plotBEINF1
can be used to plot the distributions.
meanBEINF
, meanBEINF0
and meanBEINF1
calculates the expected value of the response for a fitted model.
BEINF(mu.link = "logit", sigma.link = "logit", nu.link = "log", tau.link = "log") BEINF0(mu.link = "logit", sigma.link = "logit", nu.link = "log") BEINF1(mu.link = "logit", sigma.link = "logit", nu.link = "log") dBEINF(x, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1, log = FALSE) dBEINF0(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE) dBEINF1(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE) pBEINF(q, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) pBEINF0(q, mu = 0.5, sigma = 0.1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) pBEINF1(q, mu = 0.5, sigma = 0.1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qBEINF(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qBEINF0(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qBEINF1(p, mu = 0.5, sigma = 0.1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rBEINF(n, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1) rBEINF0(n, mu = 0.5, sigma = 0.1, nu = 0.1) rBEINF1(n, mu = 0.5, sigma = 0.1, nu = 0.1) plotBEINF(mu = 0.5, sigma = 0.5, nu = 0.5, tau = 0.5, from = 0.001, to = 0.999, n = 101, ...) plotBEINF0(mu = 0.5, sigma = 0.5, nu = 0.5, from = 1e-04, to = 0.9999, n = 101, ...) plotBEINF1(mu = 0.5, sigma = 0.5, nu = 0.5, from = 1e-04, to = 0.9999, n = 101, ...) meanBEINF(obj) meanBEINF0(obj) meanBEINF1(obj)
BEINF(mu.link = "logit", sigma.link = "logit", nu.link = "log", tau.link = "log") BEINF0(mu.link = "logit", sigma.link = "logit", nu.link = "log") BEINF1(mu.link = "logit", sigma.link = "logit", nu.link = "log") dBEINF(x, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1, log = FALSE) dBEINF0(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE) dBEINF1(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE) pBEINF(q, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) pBEINF0(q, mu = 0.5, sigma = 0.1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) pBEINF1(q, mu = 0.5, sigma = 0.1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qBEINF(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qBEINF0(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qBEINF1(p, mu = 0.5, sigma = 0.1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rBEINF(n, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1) rBEINF0(n, mu = 0.5, sigma = 0.1, nu = 0.1) rBEINF1(n, mu = 0.5, sigma = 0.1, nu = 0.1) plotBEINF(mu = 0.5, sigma = 0.5, nu = 0.5, tau = 0.5, from = 0.001, to = 0.999, n = 101, ...) plotBEINF0(mu = 0.5, sigma = 0.5, nu = 0.5, from = 1e-04, to = 0.9999, n = 101, ...) plotBEINF1(mu = 0.5, sigma = 0.5, nu = 0.5, from = 1e-04, to = 0.9999, n = 101, ...) meanBEINF(obj) meanBEINF0(obj) meanBEINF1(obj)
mu.link |
the |
sigma.link |
the |
nu.link |
the |
tau.link |
the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of parameter values modelling the probability at zero |
tau |
vector of parameter values modelling the probability at one |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
from |
where to start plotting the distribution from |
to |
up to where to plot the distribution |
obj |
a fitted |
... |
other graphical parameters for plotting |
The beta inflated distribution is defined as
for ,
,
,
,
and
.
The GAMLSS function BEINF()
re-parametrize the parameters as
where so
,
,
and
see pp. 466-467 of Rigby et al. (2019).
The beta inflated at zero distribution is defined as
for ,
,
and
.
The GAMLSS function BEINF0()
re-parametrize the parameters as
so ,
and
see pp. 467-468 of Rigby et al. (2019).
The beta inflated at 1 distribution is defined as
for ,
,
and
.
The GAMLSS function BEINF1()
re-parametrize the parameters as
so ,
and
see pp. 468-469 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a beta inflated distribution in the gamlss()
function.
...
Bob Rigby and Mikis Stasinopoulos
Ospina R. and Ferrari S. L. P. (2010) Inflated beta distributions, Statistical Papers, 23, 111-126.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gamlss.family
, BE
, BEo
, BEZI
, BEOI
BEINF()# gives information about the default links for the beta inflated distribution BEINF0() BEINF1() # plotting the distributions op<-par(mfrow=c(2,2)) plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101) plotBEINF0( mu =.5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101) plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101) curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999) par(op) # plotting the cdf op<-par(mfrow=c(2,2)) plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF") plotBEINF0( mu =.5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0") plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1") curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999, main="BE") par(op) #--------------------------------------------- op<-par(mfrow=c(2,2)) plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF") plotBEINF0( mu =.5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0") plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1") curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999, main="BE") par(op) #--------------------------------------------- op<-par(mfrow=c(2,2)) curve( pBEINF(x, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5,), 0, 1, ylim=c(0,1), main="BEINF" ) curve(pBEINF0(x, mu=.5 ,sigma=.5, nu = 0.5), 0, 1, ylim=c(0,1), main="BEINF0") curve(pBEINF1(x, mu=.5 ,sigma=.5, nu = 0.5), 0, 1, ylim=c(0,1), main="BEINF1") curve( pBE(x, mu=.5 ,sigma=.5), .001, .99, ylim=c(0,1), main="BE") par(op) #--------------------------------------------- op<-par(mfrow=c(2,2)) curve(qBEINF(x, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5), .01, .99, main="BEINF" ) curve(qBEINF0(x, mu=.5 ,sigma=.5, nu = 0.5), .01, .99, main="BEINF0" ) curve(qBEINF1(x, mu=.5 ,sigma=.5, nu = 0.5), .01, .99, main="BEINF1" ) curve(qBE(x, mu=.5 ,sigma=.5), .01, .99 , main="BE") par(op) #--------------------------------------------- op<-par(mfrow=c(2,2)) hist(rBEINF(200, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5)) hist(rBEINF0(200, mu=.5 ,sigma=.5, nu = 0.5)) hist(rBEINF1(200, mu=.5 ,sigma=.5, nu = 0.5)) hist(rBE(200, mu=.5 ,sigma=.5)) par(op) # fit a model to the data # library(gamlss) #m1<-gamlss(dat~1,family=BEINF) #meanBEINF(m1)[1]
BEINF()# gives information about the default links for the beta inflated distribution BEINF0() BEINF1() # plotting the distributions op<-par(mfrow=c(2,2)) plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101) plotBEINF0( mu =.5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101) plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101) curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999) par(op) # plotting the cdf op<-par(mfrow=c(2,2)) plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF") plotBEINF0( mu =.5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0") plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1") curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999, main="BE") par(op) #--------------------------------------------- op<-par(mfrow=c(2,2)) plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF") plotBEINF0( mu =.5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0") plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1") curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999, main="BE") par(op) #--------------------------------------------- op<-par(mfrow=c(2,2)) curve( pBEINF(x, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5,), 0, 1, ylim=c(0,1), main="BEINF" ) curve(pBEINF0(x, mu=.5 ,sigma=.5, nu = 0.5), 0, 1, ylim=c(0,1), main="BEINF0") curve(pBEINF1(x, mu=.5 ,sigma=.5, nu = 0.5), 0, 1, ylim=c(0,1), main="BEINF1") curve( pBE(x, mu=.5 ,sigma=.5), .001, .99, ylim=c(0,1), main="BE") par(op) #--------------------------------------------- op<-par(mfrow=c(2,2)) curve(qBEINF(x, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5), .01, .99, main="BEINF" ) curve(qBEINF0(x, mu=.5 ,sigma=.5, nu = 0.5), .01, .99, main="BEINF0" ) curve(qBEINF1(x, mu=.5 ,sigma=.5, nu = 0.5), .01, .99, main="BEINF1" ) curve(qBE(x, mu=.5 ,sigma=.5), .01, .99 , main="BE") par(op) #--------------------------------------------- op<-par(mfrow=c(2,2)) hist(rBEINF(200, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5)) hist(rBEINF0(200, mu=.5 ,sigma=.5, nu = 0.5)) hist(rBEINF1(200, mu=.5 ,sigma=.5, nu = 0.5)) hist(rBE(200, mu=.5 ,sigma=.5)) par(op) # fit a model to the data # library(gamlss) #m1<-gamlss(dat~1,family=BEINF) #meanBEINF(m1)[1]
The function BEOI()
defines the one-inflated beta distribution, a
three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The one-inflated beta is similar to the beta distribution but allows ones as y values. This distribution
is an extension of the beta distribution using a parameterization of the beta law that is
indexed by mean and precision parameters (Ferrari and Cribari-Neto, 2004).
The extra parameter models the probability at one.
The functions dBEOI
, pBEOI
, qBEOI
and rBEOI
define the density,
distribution function, quantile function and random
generation for the BEOI
parameterization of the one-inflated beta distribution.
plotBEOI
can be used to plot the distribution. meanBEOI
calculates the expected value of
the response for a fitted model.
BEOI(mu.link = "logit", sigma.link = "log", nu.link = "logit") dBEOI(x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE) pBEOI(q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qBEOI(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rBEOI(n, mu = 0.5, sigma = 1, nu = 0.1) plotBEOI(mu = .5, sigma = 1, nu = 0.1, from = 0.001, to = 1, n = 101, ...) meanBEOI(obj)
BEOI(mu.link = "logit", sigma.link = "log", nu.link = "logit") dBEOI(x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE) pBEOI(q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qBEOI(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rBEOI(n, mu = 0.5, sigma = 1, nu = 0.1) plotBEOI(mu = .5, sigma = 1, nu = 0.1, from = 0.001, to = 1, n = 101, ...) meanBEOI(obj)
mu.link |
the |
sigma.link |
the |
nu.link |
the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of precision parameter values |
nu |
vector of parameter values modelling the probability at one |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
from |
where to start plotting the distribution from |
to |
up to where to plot the distribution |
obj |
a fitted |
... |
other graphical parameters for plotting |
The one-inflated beta distribution is given as
The parameters satisfy ,
and
.
Here and
.
returns a gamlss.family
object which can be used to fit a one-inflated beta distribution in the gamlss()
function.
This work is part of my PhD project at the University of Sao Paulo under the supervion of Professor Silvia Ferrari. My thesis is concerned with regression modelling of rates and proportions with excess of zeros and/or ones
Raydonal Ospina, Department of Statistics, University of Sao Paulo, Brazil.
Ferrari, S.L.P., Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31 (1), 799-815.
Ospina R. and Ferrari S. L. P. (2010) Inflated beta distributions, Statistical Papers, 23, 111-126.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54 (3), 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
BEOI()# gives information about the default links for the BEOI distribution # plotting the distribution plotBEOI( mu =0.5 , sigma=5, nu = 0.1, from = 0.001, to=1, n = 101) # plotting the cdf plot(function(y) pBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999) # plotting the inverse cdf plot(function(y) qBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999) # generate random numbers dat<-rBEOI(100, mu=.5, sigma=5, nu=0.1) # fit a model to the data. # library(gamlss) #mod1<-gamlss(dat~1,sigma.formula=~1, nu.formula=~1, family=BEOI) #fitted(mod1)[1] #summary(mod1) #fitted(mod1,"mu")[1] #fitted mu #fitted(mod1,"sigma")[1] #fitted sigma #fitted(mod1,"nu")[1] #fitted nu #meanBEOI(mod1)[1] # expected value of the response
BEOI()# gives information about the default links for the BEOI distribution # plotting the distribution plotBEOI( mu =0.5 , sigma=5, nu = 0.1, from = 0.001, to=1, n = 101) # plotting the cdf plot(function(y) pBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999) # plotting the inverse cdf plot(function(y) qBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999) # generate random numbers dat<-rBEOI(100, mu=.5, sigma=5, nu=0.1) # fit a model to the data. # library(gamlss) #mod1<-gamlss(dat~1,sigma.formula=~1, nu.formula=~1, family=BEOI) #fitted(mod1)[1] #summary(mod1) #fitted(mod1,"mu")[1] #fitted mu #fitted(mod1,"sigma")[1] #fitted sigma #fitted(mod1,"nu")[1] #fitted nu #meanBEOI(mod1)[1] # expected value of the response
The function BEZI()
defines the zero-inflated beta distribution, a
three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The zero-inflated beta is similar to the beta distribution but allows zeros as y values. This distribution
is an extension of the beta distribution using a parameterization of the beta law that is
indexed by mean and precision parameters (Ferrari and Cribari-Neto, 2004).
The extra parameter models the probability at zero.
The functions dBEZI
, pBEZI
, qBEZI
and rBEZI
define the density,
distribution function, quantile function and random
generation for the BEZI
parameterization of the zero-inflated beta distribution.
plotBEZI
can be used to plot the distribution. meanBEZI
calculates the expected value of the response for a fitted model.
BEZI(mu.link = "logit", sigma.link = "log", nu.link = "logit") dBEZI(x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE) pBEZI(q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qBEZI(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rBEZI(n, mu = 0.5, sigma = 1, nu = 0.1) plotBEZI(mu = .5, sigma = 1, nu = 0.1, from = 0, to = 0.999, n = 101, ...) meanBEZI(obj)
BEZI(mu.link = "logit", sigma.link = "log", nu.link = "logit") dBEZI(x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE) pBEZI(q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qBEZI(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rBEZI(n, mu = 0.5, sigma = 1, nu = 0.1) plotBEZI(mu = .5, sigma = 1, nu = 0.1, from = 0, to = 0.999, n = 101, ...) meanBEZI(obj)
mu.link |
the |
sigma.link |
the |
nu.link |
the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of precision parameter values |
nu |
vector of parameter values modelling the probability at zero |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
from |
where to start plotting the distribution from |
to |
up to where to plot the distribution |
obj |
a fitted |
... |
other graphical parameters for plotting |
The zero-inflated beta distribution is given as
if
if . The parameters satisfy
,
and
.
Here and
.
returns a gamlss.family
object which can be used to fit a zero-inflated beta distribution in the gamlss()
function.
This work is part of my PhD project at the University of Sao Paulo under the supervion of Professor Silvia Ferrari. My thesis is concerned with regression modelling of rates and proportions with excess of zeros and/or ones
Raydonal Ospina, Department of Statistics, University of Sao Paulo, Brazil.
Ferrari, S.L.P., Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31 (1), 799-815.
Ospina R. and Ferrari S. L. P. (2010) Inflated beta distributions, Statistical Papers, 23, 111-126.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54 (3), 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
BEZI()# gives information about the default links for the BEZI distribution # plotting the distribution plotBEZI( mu =0.5 , sigma=5, nu = 0.1, from = 0, to=0.99, n = 101) # plotting the cdf plot(function(y) pBEZI(y, mu=.5 ,sigma=5, nu=0.1), 0, 0.999) # plotting the inverse cdf plot(function(y) qBEZI(y, mu=.5 ,sigma=5, nu=0.1), 0, 0.999) # generate random numbers dat<-rBEZI(100, mu=.5, sigma=5, nu=0.1) # fit a model to the data. Tits a constant for mu, sigma and nu # library(gamlss) #mod1<-gamlss(dat~1,sigma.formula=~1, nu.formula=~1, family=BEZI) #fitted(mod1)[1] #summary(mod1) #fitted(mod1,"mu")[1] #fitted mu #fitted(mod1,"sigma")[1] #fitted sigma #fitted(mod1,"nu")[1] #fitted nu #meanBEZI(mod1)[1] # expected value of the response
BEZI()# gives information about the default links for the BEZI distribution # plotting the distribution plotBEZI( mu =0.5 , sigma=5, nu = 0.1, from = 0, to=0.99, n = 101) # plotting the cdf plot(function(y) pBEZI(y, mu=.5 ,sigma=5, nu=0.1), 0, 0.999) # plotting the inverse cdf plot(function(y) qBEZI(y, mu=.5 ,sigma=5, nu=0.1), 0, 0.999) # generate random numbers dat<-rBEZI(100, mu=.5, sigma=5, nu=0.1) # fit a model to the data. Tits a constant for mu, sigma and nu # library(gamlss) #mod1<-gamlss(dat~1,sigma.formula=~1, nu.formula=~1, family=BEZI) #fitted(mod1)[1] #summary(mod1) #fitted(mod1,"mu")[1] #fitted mu #fitted(mod1,"sigma")[1] #fitted sigma #fitted(mod1,"nu")[1] #fitted nu #meanBEZI(mod1)[1] # expected value of the response
The BI()
function defines the binomial distribution, a one parameter family distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dBI
, pBI
, qBI
and rBI
define the density, distribution function, quantile function and random
generation for the binomial, BI()
, distribution.
BI(mu.link = "logit") dBI(x, bd = 1, mu = 0.5, log = FALSE) pBI(q, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE) qBI(p, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE) rBI(n, bd = 1, mu = 0.5)
BI(mu.link = "logit") dBI(x, bd = 1, mu = 0.5, log = FALSE) pBI(q, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE) qBI(p, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE) rBI(n, bd = 1, mu = 0.5)
mu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive probabilities |
bd |
vector of binomial denominators |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for binomial distribution.
for and
see pp. 521-522 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a binomial distribution in the gamlss()
function.
The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures.
The parameter mu
represents a probability parameter with limits .
is the mean of the distribution where n is the binomial denominator.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
BI()# gives information about the default links for the Binomial distribution # data(aep) # library(gamlss) # h<-gamlss(y~ward+loglos+year, family=BI, data=aep) # plot of the binomial distribution curve(dBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h") tN <- table(Ni <- rBI(1000, mu=.2, bd=10)) r <- barplot(tN, col='lightblue')
BI()# gives information about the default links for the Binomial distribution # data(aep) # library(gamlss) # h<-gamlss(y~ward+loglos+year, family=BI, data=aep) # plot of the binomial distribution curve(dBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h") tN <- table(Ni <- rBI(1000, mu=.2, bd=10)) r <- barplot(tN, col='lightblue')
The BNB()
function defines the beta negative binomial distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dBNB
, pBNB
, qBNB
and rBNB
define the density, distribution function, quantile function and random
generation for the beta negative binomial distribution, BNB()
.
The functions ZABNB()
and ZIBNB()
are the zero adjusted (hurdle) and zero inflated versions of the beta negative binomial distribution, respectively. That is four parameter distributions.
The functions dZABNB
, dZIBNB
, pZABNB
,pZIBNB
, qZABNB
qZIBNB
rZABNB
and rZIBNB
define the probability, cumulative, quantile and random
generation functions for the zero adjusted and zero inflated beta negative binomial distributions, ZABNB()
, ZIBNB()
, respectively.
BNB(mu.link = "log", sigma.link = "log", nu.link = "log") dBNB(x, mu = 1, sigma = 1, nu = 1, log = FALSE) pBNB(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) qBNB(p, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rBNB(n, mu = 1, sigma = 1, nu = 1, max.value = 10000) ZABNB(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit") dZABNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE) pZABNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZABNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZABNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000) ZIBNB(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit") dZIBNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE) pZIBNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZIBNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZIBNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000)
BNB(mu.link = "log", sigma.link = "log", nu.link = "log") dBNB(x, mu = 1, sigma = 1, nu = 1, log = FALSE) pBNB(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) qBNB(p, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rBNB(n, mu = 1, sigma = 1, nu = 1, max.value = 10000) ZABNB(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit") dZABNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE) pZABNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZABNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZABNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000) ZIBNB(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit") dZIBNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE) pZIBNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZIBNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZIBNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000)
mu.link |
The link function for |
sigma.link |
The link function for |
nu.link |
The link function for |
tau.link |
The link function for |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of positive dispersion parameter |
nu |
vector of a positive parameter |
tau |
vector of probabilities |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
The probability function of the BNB
is
for ,
,
and
, see pp 502-503 of Rigby et al. (2019).
The distribution has mean .
The definition of the zero adjusted beta negative binomial distribution, ZABNB
and the the zero inflated beta negative binomial distribution, ZIBNB
, are given in p. 517 and pp. 519 of of Rigby et al. (2019), respectively.
returns a gamlss.family
object which can be used to fit a Poisson distribution in the gamlss()
function.
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
BNB() # gives information about the default links for the beta negative binomial # plotting the distribution plot(function(y) dBNB(y, mu = 10, sigma = 0.5, nu=2), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rBNB(1000, mu=5, sigma=0.5, nu=2)) r <- barplot(tN, col='lightblue') ZABNB() ZIBNB() # plotting the distribution plot(function(y) dZABNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1), from=0, to=40, n=40+1, type="h") plot(function(y) dZIBNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1), from=0, to=40, n=40+1, type="h") ## Not run: library(gamlss) data(species) species <- transform(species, x=log(lake)) m6 <- gamlss(fish~ pb(x), sigma.fo=~1, data=species, family=BNB) ## End(Not run)
BNB() # gives information about the default links for the beta negative binomial # plotting the distribution plot(function(y) dBNB(y, mu = 10, sigma = 0.5, nu=2), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rBNB(1000, mu=5, sigma=0.5, nu=2)) r <- barplot(tN, col='lightblue') ZABNB() ZIBNB() # plotting the distribution plot(function(y) dZABNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1), from=0, to=40, n=40+1, type="h") plot(function(y) dZIBNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1), from=0, to=40, n=40+1, type="h") ## Not run: library(gamlss) data(species) species <- transform(species, x=log(lake)) m6 <- gamlss(fish~ pb(x), sigma.fo=~1, data=species, family=BNB) ## End(Not run)
This function is used within the distribution family specification of a GAMLSS model to define the right link for each of the parameters of the distribution. This function should not be called by the user unless he/she specify a new distribution family or wishes to change existing link functions in the parameters.
checklink(which.link = NULL, which.dist = NULL, link = NULL, link.List = NULL)
checklink(which.link = NULL, which.dist = NULL, link = NULL, link.List = NULL)
which.link |
which parameter link e.g. |
which.dist |
which distribution family e.g. |
link |
a repetition of |
link.List |
what link function are required e.g. |
Defines the right link for each parameter
Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
Those functions are used in the distribution book of gamlss, see Rigby et. al 2019.
binom_1_31(family = BI, mu = c(0.1, 0.5, 0.7), bd = NULL, miny = 0, maxy = 20, cex.axis = 1.2, cex.all = 1.5) binom_2_33(family = BB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2), bd = NULL, miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5) binom_3_33(family = ZIBB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2), nu = c(0.01, 0.3), bd = NULL, miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.3, legend.cex=1, legend.x="topright", legend.where=c("left","right", "center")) contR_2_12(family = "NO", mu = c(0, -1, 1), sigma = c(1, 0.5, 2), cols=c(gray(.1),gray(.2),gray(.3)), ltype = c(1, 2, 3), maxy = 7, no.points = 201, y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topleft" ) contR_3_11(family = "PE", mu = 0, sigma = 1, nu = c(1, 2, 3), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7, no.points = 201, ltype = c(1, 2, 3), y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topleft") contR_4_13(family = "SEP3", mu = 0, sigma = 1, nu = c(0.5, 1, 2), tau = c(1, 2, 5), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7, no.points = 201, ltype = c(1, 2, 3), y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topleft", legend.where=c("left","right")) contRplus_2_11(family = GA, mu = 1, sigma = c(0.1, 0.6, 1), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 4, no.points = 201, y.axis.lim = 1.1, ltype = c(1, 2, 3), cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright") contRplus_3_13(family = "BCCG", mu = 1, sigma = c(0.15, 0.2, 0.5), nu = c(-2, 0, 4), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 4, ltype = c(1, 2, 3), no.points = 201, y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright", legend.where=c("left","right")) contRplus_4_33(family = BCT, mu = 1, sigma = c(0.15, 0.2, 0.5), nu = c(-4, 0, 2), tau = c(100, 5, 1), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 4, ltype = c(1, 2, 3), no.points = 201, y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright", legend.where=c("left","right")) contR01_2_13(family = "BE", mu = c(0.2, 0.5, 0.8), sigma = c(0.2, 0.5, 0.8), cols=c(gray(.1),gray(.2),gray(.3)), ltype = c(1, 2, 3), maxy = 7, no.points = 201, y.axis.lim = 1.1, maxYlim = 10, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright", legend.where=c("left","right", "center")) contR01_4_33(family = GB1, mu = c(0.5), sigma = c(0.2, 0.5, 0.7), nu = c(1, 2, 5), tau = c(0.5, 1, 2), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 0.999, ltype = c(1, 2, 3), no.points = 201, y.axis.lim = 1.1, maxYlim = 10,cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright", legend.where=c("left","right", "center")) count_1_31(family = PO, mu = c(1, 2, 5), miny = 0, maxy = 10, cex.axis = 1.2, cex.all = 1.5) count_1_22(family = PO, mu = c(1, 2, 5, 10), miny = 0, maxy = 20, cex.axis = 1.2, cex.all = 1.5) count_2_32(family = NBI, mu = c(0.5, 1, 5), sigma = c(0.1, 2), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5) count_2_32R(family = NBI, mu = c(1, 2), sigma = c(0.1, 1, 2), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5) count_2_33(family = NBI, mu = c(0.1, 1, 2), sigma = c(0.5, 1, 2), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5) count_3_32(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1), nu = c(-0.5, 0.5), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.2, legend.cex=1, legend.x="topright", legend.where=c("left","right")) count_3_33(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1, 2), nu = c(-0.5, 0.5, 1), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.3, legend.cex=1, legend.x="topright", legend.where=c("left","right", "center"))
binom_1_31(family = BI, mu = c(0.1, 0.5, 0.7), bd = NULL, miny = 0, maxy = 20, cex.axis = 1.2, cex.all = 1.5) binom_2_33(family = BB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2), bd = NULL, miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5) binom_3_33(family = ZIBB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2), nu = c(0.01, 0.3), bd = NULL, miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.3, legend.cex=1, legend.x="topright", legend.where=c("left","right", "center")) contR_2_12(family = "NO", mu = c(0, -1, 1), sigma = c(1, 0.5, 2), cols=c(gray(.1),gray(.2),gray(.3)), ltype = c(1, 2, 3), maxy = 7, no.points = 201, y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topleft" ) contR_3_11(family = "PE", mu = 0, sigma = 1, nu = c(1, 2, 3), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7, no.points = 201, ltype = c(1, 2, 3), y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topleft") contR_4_13(family = "SEP3", mu = 0, sigma = 1, nu = c(0.5, 1, 2), tau = c(1, 2, 5), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7, no.points = 201, ltype = c(1, 2, 3), y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topleft", legend.where=c("left","right")) contRplus_2_11(family = GA, mu = 1, sigma = c(0.1, 0.6, 1), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 4, no.points = 201, y.axis.lim = 1.1, ltype = c(1, 2, 3), cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright") contRplus_3_13(family = "BCCG", mu = 1, sigma = c(0.15, 0.2, 0.5), nu = c(-2, 0, 4), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 4, ltype = c(1, 2, 3), no.points = 201, y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright", legend.where=c("left","right")) contRplus_4_33(family = BCT, mu = 1, sigma = c(0.15, 0.2, 0.5), nu = c(-4, 0, 2), tau = c(100, 5, 1), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 4, ltype = c(1, 2, 3), no.points = 201, y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright", legend.where=c("left","right")) contR01_2_13(family = "BE", mu = c(0.2, 0.5, 0.8), sigma = c(0.2, 0.5, 0.8), cols=c(gray(.1),gray(.2),gray(.3)), ltype = c(1, 2, 3), maxy = 7, no.points = 201, y.axis.lim = 1.1, maxYlim = 10, cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright", legend.where=c("left","right", "center")) contR01_4_33(family = GB1, mu = c(0.5), sigma = c(0.2, 0.5, 0.7), nu = c(1, 2, 5), tau = c(0.5, 1, 2), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 0.999, ltype = c(1, 2, 3), no.points = 201, y.axis.lim = 1.1, maxYlim = 10,cex.axis = 1.5, cex.all = 1.5, legend.cex=1, legend.x="topright", legend.where=c("left","right", "center")) count_1_31(family = PO, mu = c(1, 2, 5), miny = 0, maxy = 10, cex.axis = 1.2, cex.all = 1.5) count_1_22(family = PO, mu = c(1, 2, 5, 10), miny = 0, maxy = 20, cex.axis = 1.2, cex.all = 1.5) count_2_32(family = NBI, mu = c(0.5, 1, 5), sigma = c(0.1, 2), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5) count_2_32R(family = NBI, mu = c(1, 2), sigma = c(0.1, 1, 2), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5) count_2_33(family = NBI, mu = c(0.1, 1, 2), sigma = c(0.5, 1, 2), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5) count_3_32(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1), nu = c(-0.5, 0.5), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.2, legend.cex=1, legend.x="topright", legend.where=c("left","right")) count_3_33(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1, 2), nu = c(-0.5, 0.5, 1), miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.3, legend.cex=1, legend.x="topright", legend.where=c("left","right", "center"))
family |
a gamlss family distribution |
mu |
the |
sigma |
The |
nu |
the |
tau |
the |
bd |
the binomial denominator |
miny |
minimal value for the y axis |
maxy |
maximal value for the y axis |
cex.axis |
the size of the letters in the two axes |
cex.all |
the overall size of all plotting characters |
cols |
colours |
spacing |
spacing between plots |
ltype |
The type of lines used |
no.points |
the number of points in the curve |
y.axis.lim |
the maximum value for the y axis |
maxYlim |
the maximum permissible value for Y |
legend.cex |
the size of the legend |
legend.x |
where in the figure to put the legend |
legend.where |
where in the whole plot to put the legend |
Th function plot different types of continuous and discrete distributions:
i) contR
: continuous distribution defined on minus infinity to plus infinity,
ii) contRplus
: continuous distribution defined from zero to plus infinity,
iii) contR01
: continuous distribution defined from zero to 1,
iv) bimom
binomial type discrete distributions,
v) count
count type discrete distributions.
The first number after the first underline in the name of the function indicates the number of parameters in the distribution. The two numbers after the second underline indicate how may rows and columns are in the plot.
The result is a plot
more notes
Mikis Stasinopoulos, Robert Rigby, Gillian Heller, Fernada De Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
count_1_31()
count_1_31()
The function DBI()
defines the double binomial distribution, a two parameters distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dDBI
, pDBI
, qDBI
and rDBI
define the density, distribution function, quantile function and random generation for the double binomial, DBI()
, distribution. The function GetBI_C
calculates numericaly the constant of proportionality needed for the pdf to sum up to 1.
DBI(mu.link = "logit", sigma.link = "log") dDBI(x, mu = 0.5, sigma = 1, bd = 2, log = FALSE) pDBI(q, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE, log.p = FALSE) qDBI(p, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE, log.p = FALSE) rDBI(n, mu = 0.5, sigma = 1, bd = 2) GetBI_C(mu, sigma, bd)
DBI(mu.link = "logit", sigma.link = "log") dDBI(x, mu = 0.5, sigma = 1, bd = 2, log = FALSE) pDBI(q, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE, log.p = FALSE) qDBI(p, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE, log.p = FALSE) rDBI(n, mu = 0.5, sigma = 1, bd = 2) GetBI_C(mu, sigma, bd)
mu.link |
the link function for |
sigma.link |
the link function for |
x , q
|
vector of (non-negative integer) quantiles |
bd |
vector of binomial denominator |
p |
vector of probabilities |
mu |
the |
sigma |
the |
lower.tail |
logical; if |
log , log.p
|
logical; if |
n |
how many random values to generate |
The definition for the Double Poisson distribution first introduced by Efron (1986) is:
for ,
and
where
is the constant of proportinality which is calculated numerically using the function
GetBI_C()
, see pp. 524-525 of Rigby et al. (2019).
The function DBI
returns a gamlss.family
object which can be used to fit a double binomial distribution in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby, Marco Enea and Fernanda de Bastiani
Efron, B., 1986. Double exponential families and their use in generalized linear Regression. Journal of the American Statistical Association 81 (395), 709-721.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
DBI() x <- 0:20 # underdispersed DBI plot(x, dDBI(x, mu=.5, sigma=.2, bd=20), type="h", col="green", lwd=2) # binomial lines(x+0.1, dDBI(x, mu=.5, sigma=1, bd=20), type="h", col="black", lwd=2) # overdispersed DBI lines(x+.2, dDBI(x, mu=.5, sigma=2, bd=20), type="h", col="red",lwd=2)
DBI() x <- 0:20 # underdispersed DBI plot(x, dDBI(x, mu=.5, sigma=.2, bd=20), type="h", col="green", lwd=2) # binomial lines(x+0.1, dDBI(x, mu=.5, sigma=1, bd=20), type="h", col="black", lwd=2) # overdispersed DBI lines(x+.2, dDBI(x, mu=.5, sigma=2, bd=20), type="h", col="red",lwd=2)
The DBURR12()
function defines the discrete Burr type XII distribution, a three parameter discrete distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dDBURR12()
, pDBURR12()
, qDBURR12()
and rDBURR12()
define the density, distribution function, quantile function and random generation for the discrete Burr type XII DBURR12()
, distribution.
DBURR12(mu.link = "log", sigma.link = "log", nu.link = "log") dDBURR12(x, mu = 5, sigma = 2, nu = 2, log = FALSE) pDBURR12(q, mu = 5, sigma = 2, nu = 2, lower.tail = TRUE, log.p = FALSE) qDBURR12(p, mu = 5, sigma = 2, nu = 2, lower.tail = TRUE, log.p = FALSE) rDBURR12(n, mu = 5, sigma = 2, nu = 2)
DBURR12(mu.link = "log", sigma.link = "log", nu.link = "log") dDBURR12(x, mu = 5, sigma = 2, nu = 2, log = FALSE) pDBURR12(q, mu = 5, sigma = 2, nu = 2, lower.tail = TRUE, log.p = FALSE) qDBURR12(p, mu = 5, sigma = 2, nu = 2, lower.tail = TRUE, log.p = FALSE) rDBURR12(n, mu = 5, sigma = 2, nu = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
p |
vector of probabilities |
q |
vector of quantiles |
mu |
vector of positive |
sigma |
vector of positive dispersion parameter |
nu |
vector of |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
n |
number of random values to return |
The probability function of the discrete Burr XII distribution is given by
for ,
,
and
see pp 504-505 of Rigby et al. (2019).
Note that the above parametrization is different from Para and Jan (2016).
The function DBURR12()
Returns a gamlss.family
object which can be used to fit a discrete Burr XII distribution in the gamlss()
function.
The parameters of the distributioins are highly correlated so the argument of gamlss
method=mixed(10,100)
may have to be used.
The distribution can be under/over dispersed and also with long tails.
Rigby, R. A., Stasinopoulos D. M., Fernanda De Bastiani.
Para, B. A. and Jan, T. R. (2016). On discrete three parameter Burr type XII and discrete Lomax distributions and their applications to model count data from medical science. Biometrics and Biostatistics International Journal, 54, part 3, pp 507-554.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 4, pp 1-15.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
DBURR12()# #plot the pdf using plot plot(function(y) dDBURR12(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pDBURR12(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf # generate random sample tN <- table(Ni <- rDBURR12(100, mu=5, sigma=1, nu=1)) r <- barplot(tN, col='lightblue')
DBURR12()# #plot the pdf using plot plot(function(y) dDBURR12(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pDBURR12(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf # generate random sample tN <- table(Ni <- rDBURR12(100, mu=5, sigma=1, nu=1)) r <- barplot(tN, col='lightblue')
The DEL()
function defines the Delaporte distribution, a three parameter discrete distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dDEL
, pDEL
, qDEL
and rDEL
define the density, distribution function, quantile function and random
generation for the Delaporte DEL()
, distribution.
DEL(mu.link = "log", sigma.link = "log", nu.link = "logit") dDEL(x, mu=1, sigma=1, nu=0.5, log=FALSE) pDEL(q, mu=1, sigma=1, nu=0.5, lower.tail = TRUE, log.p = FALSE) qDEL(p, mu=1, sigma=1, nu=0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rDEL(n, mu=1, sigma=1, nu=0.5, max.value = 10000)
DEL(mu.link = "log", sigma.link = "log", nu.link = "logit") dDEL(x, mu=1, sigma=1, nu=0.5, log=FALSE) pDEL(q, mu=1, sigma=1, nu=0.5, lower.tail = TRUE, log.p = FALSE) qDEL(p, mu=1, sigma=1, nu=0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rDEL(n, mu=1, sigma=1, nu=0.5, max.value = 10000)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive mu |
sigma |
vector of positive dispersion parameter |
nu |
vector of nu |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
The probability function of the Delaporte distribution is given by
where
for
where
,
and
.
This distribution is a parametrization of the distribution given by Wimmer and Altmann (1999) p 515-516 where
,
and
.
For more details see pp 506-507 of Rigby et al. (2019).
Returns a gamlss.family
object which can be used to fit a Delaporte distribution in the gamlss()
function.
The mean of is given by
and the variance by
.
Rigby, R. A., Stasinopoulos D. M. and Marco Enea
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Wimmer, G. and Altmann, G (1999). Thesaurus of univariate discrete probability distributions . Stamn Verlag, Essen, Germany
(see also https://www.gamlss.com/).
DEL()# gives information about the default links for the Delaporte distribution #plot the pdf using plot plot(function(y) dDEL(y, mu=10, sigma=1, nu=.5), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pDEL(seq(from=0,to=100), mu=10, sigma=1, nu=0.5), type="h") # cdf # generate random sample tN <- table(Ni <- rDEL(100, mu=10, sigma=1, nu=0.5)) r <- barplot(tN, col='lightblue') # fit a model to the data # libary(gamlss) # gamlss(Ni~1,family=DEL, control=gamlss.control(n.cyc=50))
DEL()# gives information about the default links for the Delaporte distribution #plot the pdf using plot plot(function(y) dDEL(y, mu=10, sigma=1, nu=.5), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pDEL(seq(from=0,to=100), mu=10, sigma=1, nu=0.5), type="h") # cdf # generate random sample tN <- table(Ni <- rDEL(100, mu=10, sigma=1, nu=0.5)) r <- barplot(tN, col='lightblue') # fit a model to the data # libary(gamlss) # gamlss(Ni~1,family=DEL, control=gamlss.control(n.cyc=50))
The function DPO()
defines the double Poisson distribution, a two parameters distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dDPO
, pDPO
, qDPO
and rPO
define the density, distribution function, quantile function and random generation for the double Poisson, DPO()
, distribution. The function get_C()
calculates numericaly the constant of proportionality needed for the pdf to sum up to 1.
DPO(mu.link = "log", sigma.link = "log") dDPO(x, mu = 1, sigma = 1, log = FALSE) pDPO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qDPO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rDPO(n, mu = 1, sigma = 1, max.value = 10000) get_C(x, mu, sigma)
DPO(mu.link = "log", sigma.link = "log") dDPO(x, mu = 1, sigma = 1, log = FALSE) pDPO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qDPO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rDPO(n, mu = 1, sigma = 1, max.value = 10000) get_C(x, mu, sigma)
mu.link |
the link function for |
sigma.link |
the link function for |
x , q
|
vector of (non-negative integer) quantiles |
p |
vector of probabilities |
mu |
the |
sigma |
the |
lower.tail |
logical; if |
log , log.p
|
logical; if |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
n |
how many random values to generate |
The definition for the Double Poisson distribution first introduced by Efron (1986) [ see also Rigby et al (2019) page 480] is:
for ,
and
where
is the constant of proportinality which is calculated numerically using the function
get_C
.
The function DPO
returns a gamlss.family
object which can be used to fit a double Poisson distribution in the gamlss()
function.
The distributons calculates the constant of proportionality numerically therefore it can be slow for large data
Mikis Stasinopoulos, Bob Rigby and Marco Enea
Efron, B., 1986. Double exponential families and their use in generalized linear Regression. Journal of the American Statistical Association 81 (395), 709-721.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
DPO() # overdisperse DPO x <- 0:20 plot(x, dDPO(x, mu=5, sigma=3), type="h", col="red") # underdisperse DPO plot(x, dDPO(x, mu=5, sigma=.3), type="h", col="red") # generate random sample Y <- rDPO(100,5,.5) plot(table(Y)) points(0:20, 100*dDPO(0:20, mu=5, sigma=.5)+0.2, col="red") # fit a model to the data # library(gamlss) # gamlss(Y~1,family=DPO)
DPO() # overdisperse DPO x <- 0:20 plot(x, dDPO(x, mu=5, sigma=3), type="h", col="red") # underdisperse DPO plot(x, dDPO(x, mu=5, sigma=.3), type="h", col="red") # generate random sample Y <- rDPO(100,5,.5) plot(table(Y)) points(0:20, 100*dDPO(0:20, mu=5, sigma=.5)+0.2, col="red") # fit a model to the data # library(gamlss) # gamlss(Y~1,family=DPO)
This function defines the generalized t distribution, a four parameter distribution. The response variable is
in the range from minus infinity to plus infinity.
The functions dEGB2
,
pEGB2
, qEGB2
and rEGB2
define the density,
distribution function, quantile function and random
generation for the generalized beta type 2 distribution.
EGB2(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dEGB2(x, mu = 0, sigma = 1, nu = 1, tau = 0.5, log = FALSE) pEGB2(q, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE) qEGB2(p, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE) rEGB2(n, mu = 0, sigma = 1, nu = 1, tau = 0.5)
EGB2(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dEGB2(x, mu = 0, sigma = 1, nu = 1, tau = 0.5, log = FALSE) pEGB2(q, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE) qEGB2(p, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE) rEGB2(n, mu = 0, sigma = 1, nu = 1, tau = 0.5)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the Generalized Beta type 2, (GB2
), is defined as:
for , where
and
,
,
and
, McDonald and Xu (1995), see also pp. 385-386 of Rigby et al. (2019).
EGB2()
returns a gamlss.family
object which can be used to fit the EGB2 distribution in the
gamlss()
function.
dEGB2()
gives the density, pEGB2()
gives the distribution
function, qEGB2()
gives the quantile function, and rEGB2()
generates random deviates.
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
EGB2() # y<- rEGB2(200, mu=5, sigma=2, nu=1, tau=4) library(MASS) truehist(y) fx<-dEGB2(seq(min(y), 20, length=200), mu=5 ,sigma=2, nu=1, tau=4) lines(seq(min(y),20,length=200),fx) # something funny here # library(gamlss) # histDist(y, family=EGB2, n.cyc=60) integrate(function(x) x*dEGB2(x=x, mu=5, sigma=2, nu=1, tau=4), -Inf, Inf) curve(dEGB2(x, mu=5 ,sigma=2, nu=1, tau=4), -10, 10, main = "The EGB2 density mu=5, sigma=2, nu=1, tau=4")
EGB2() # y<- rEGB2(200, mu=5, sigma=2, nu=1, tau=4) library(MASS) truehist(y) fx<-dEGB2(seq(min(y), 20, length=200), mu=5 ,sigma=2, nu=1, tau=4) lines(seq(min(y),20,length=200),fx) # something funny here # library(gamlss) # histDist(y, family=EGB2, n.cyc=60) integrate(function(x) x*dEGB2(x=x, mu=5, sigma=2, nu=1, tau=4), -Inf, Inf) curve(dEGB2(x, mu=5 ,sigma=2, nu=1, tau=4), -10, 10, main = "The EGB2 density mu=5, sigma=2, nu=1, tau=4")
The ex-Gaussian distribution is often used by psychologists to model response time (RT). It is defined by adding two
random variables, one from a normal distribution and the other from an exponential. The parameters mu
and
sigma
are the mean and standard deviation from the normal distribution variable while the parameter nu
is the mean of the exponential variable.
The functions dexGAUS
, pexGAUS
, qexGAUS
and rexGAUS
define the density, distribution function,
quantile function and random generation for the ex-Gaussian distribution.
exGAUS(mu.link = "identity", sigma.link = "log", nu.link = "log") dexGAUS(x, mu = 5, sigma = 1, nu = 1, log = FALSE) pexGAUS(q, mu = 5, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) qexGAUS(p, mu = 5, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) rexGAUS(n, mu = 5, sigma = 1, nu = 1, ...)
exGAUS(mu.link = "identity", sigma.link = "log", nu.link = "log") dexGAUS(x, mu = 5, sigma = 1, nu = 1, log = FALSE) pexGAUS(q, mu = 5, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) qexGAUS(p, mu = 5, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) rexGAUS(n, mu = 5, sigma = 1, nu = 1, ...)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of |
sigma |
vector of scale parameter values |
nu |
vector of |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
... |
for extra arguments |
The probability density function of the ex-Gaussian distribution, (exGAUS
), is defined as
where is the cdf of the standard normal distribution,
for
,
,
and
see pp. 372-373 of Rigby et al. (2019).
exGAUS()
returns a gamlss.family
object which can be used to fit ex-Gaussian distribution in the gamlss()
function.
dexGAUS()
gives the density, pexGAUS()
gives the distribution function,
qexGAUS()
gives the quantile function, and rexGAUS()
generates random deviates.
The mean of the ex-Gaussian is and the variance is
.
Mikis Stasinopoulos and Bob Rigby
Cousineau, D. Brown, S. and Heathecote A. (2004) Fitting distributions using maximum likelihood: Methods and packages, Behavior Research Methods, Instruments and Computers, 46, 742-756.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gamlss.family
, BCCG
, GA
,
IG
LNO
exGAUS() # y<- rexGAUS(100, mu=300, nu=100, sigma=35) hist(y) # library(gamlss) # m1<-gamlss(y~1, family=exGAUS) # plot(m1) curve(dexGAUS(x, mu=300 ,sigma=35,nu=100), 100, 600, main = "The ex-GAUS density mu=300 ,sigma=35,nu=100") plot(function(x) pexGAUS(x, mu=300,sigma=35,nu=100), 100, 600, main = "The ex-GAUS cdf mu=300, sigma=35, nu=100")
exGAUS() # y<- rexGAUS(100, mu=300, nu=100, sigma=35) hist(y) # library(gamlss) # m1<-gamlss(y~1, family=exGAUS) # plot(m1) curve(dexGAUS(x, mu=300 ,sigma=35,nu=100), 100, 600, main = "The ex-GAUS density mu=300 ,sigma=35,nu=100") plot(function(x) pexGAUS(x, mu=300,sigma=35,nu=100), 100, 600, main = "The ex-GAUS cdf mu=300, sigma=35, nu=100")
The function EXP defines the exponential distribution, a one parameter distribution for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The mu
parameter represents the mean of the distribution.
The functions dEXP
, pEXP
, qEXP
and rEXP
define the density,
distribution function, quantile function and random generation for the specific parameterization
of the exponential distribution defined by function EXP.
EXP(mu.link ="log") dEXP(x, mu = 1, log = FALSE) pEXP(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qEXP(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rEXP(n, mu = 1)
EXP(mu.link ="log") dEXP(x, mu = 1, log = FALSE) pEXP(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qEXP(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rEXP(n, mu = 1)
mu.link |
Defines the mu.link, with "log" link as the default for the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
n |
number of observations. If length(n) > 1, the length is taken to be the number required |
The specific parameterization of the exponential distribution used in EXP is
for y>0, see pp. 422-23 of Rigby et al. (2019).
EXP() returns a gamlss.family object which can be used to fit an exponential distribution in the gamlss() function. dEXP() gives the density, pEXP() gives the distribution function, qEXP() gives the quantile function, and rEXP() generates random deviates.
Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
y<-rEXP(1000,mu=1) # generates 1000 random observations hist(y) # library(gamlss) # histDist(y, family=EXP)
y<-rEXP(1000,mu=1) # generates 1000 random observations hist(y) # library(gamlss) # histDist(y, family=EXP)
This is an attempt to create a distribution function if the only existing information is the quantiles or expectiles of the distribution.
flexDist(quantiles = list(values=c(-1.96,0,1.96), prob=c(0.05, .50, 0.95)), expectiles = list(), lambda = 10, kappa = 10, delta = 1e-07, order = 3, n.iter = 200, plot = TRUE, no.inter = 100, lower = NULL, upper = NULL, perc.quant = 0.3, ...)
flexDist(quantiles = list(values=c(-1.96,0,1.96), prob=c(0.05, .50, 0.95)), expectiles = list(), lambda = 10, kappa = 10, delta = 1e-07, order = 3, n.iter = 200, plot = TRUE, no.inter = 100, lower = NULL, upper = NULL, perc.quant = 0.3, ...)
quantiles |
a list with components |
expectiles |
a list with components |
lambda |
smoothing parameter for the log-pdf |
kappa |
smoothing parameter for log concavity |
delta |
smoothing parameter for ridge penalty |
order |
the order of the penalty for log-pdf |
n.iter |
maximum number of iterations |
plot |
whether to plot the result |
no.inter |
How many discrete probabilities to evaluate |
lower |
the lower value of the x |
upper |
the upper value of the x |
perc.quant |
how far from the quantile should go out to define the limit of x if not set by |
... |
additional arguments |
Returns a list with components
pdf |
the hights of the fitted pdf, the sum of it multiplied by the Dx should add up to 1 i.e. |
cdf |
the fitted cdf |
x |
the values of x where the discretise distribution is defined |
pFun |
the cdf of the fitted non-parametric distribution |
qFun |
the inverse cdf function of the fitted non-parametric distribution |
rFun |
a function to generate a random sample from the fitted non-parametric distribution |
Mikis Stasinopoulos, Paul Eilers, Bob Rigby and Vlasios Voudouris
Eilers, P. H. C., Voudouris, V., Rigby R. A., Stasinopoulos D. M. (2012) Estimation of nonparametric density from sparse summary information, under review.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
# Normal r1<-flexDist(quantiles=list(values=qNO(c(0.05, 0.25, 0.5,0.75, 0.95), mu=0, sigma=1), prob=c( 0.05, 0.25, 0.5,0.75,0.95 )), no.inter=200, lambda=10, kappa=10, perc.quant=0.3) # GAMMA r1<-flexDist(quantiles=list(values=qGA(c(0.05,0.25, 0.5,0.75,0.95), mu=1, sigma=.8), prob=c(0.05,0.25, 0.5,0.75,0.95)), expectiles=list(values=1, prob=0.5), lambda=10, kappa=10, lower=0, upper=5)#
# Normal r1<-flexDist(quantiles=list(values=qNO(c(0.05, 0.25, 0.5,0.75, 0.95), mu=0, sigma=1), prob=c( 0.05, 0.25, 0.5,0.75,0.95 )), no.inter=200, lambda=10, kappa=10, perc.quant=0.3) # GAMMA r1<-flexDist(quantiles=list(values=qGA(c(0.05,0.25, 0.5,0.75,0.95), mu=1, sigma=.8), prob=c(0.05,0.25, 0.5,0.75,0.95)), expectiles=list(values=1, prob=0.5), lambda=10, kappa=10, lower=0, upper=5)#
The function GA
defines the gamma distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the
function gamlss()
. The parameterization used has the mean of the distribution equal to and the variance equal to
.
The functions
dGA
, pGA
, qGA
and rGA
define the density, distribution function, quantile function and random
generation for the specific parameterization of the gamma distribution defined by function GA
.
GA(mu.link = "log", sigma.link ="log") dGA(x, mu = 1, sigma = 1, log = FALSE) pGA(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qGA(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rGA(n, mu = 1, sigma = 1)
GA(mu.link = "log", sigma.link ="log") dGA(x, mu = 1, sigma = 1, log = FALSE) pGA(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qGA(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rGA(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The specific parameterization of the gamma distribution used in GA
is
for ,
and
, see pp. 423-424 of Rigby et al. (2019).
GA()
returns a gamlss.family
object which can be used to fit a gamma distribution in the gamlss()
function.
dGA()
gives the density, pGA()
gives the distribution
function, qGA()
gives the quantile function, and rGA()
generates random deviates. The latest functions are based on the equivalent R
functions for gamma distribution.
is the mean of the distribution in
GA
. In the function GA
, is the square root of the
usual dispersion parameter for a GLM gamma model. Hence
is the standard deviation of the distribution defined in
GA
.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
GA()# gives information about the default links for the gamma distribution # dat<-rgamma(100, shape=1, scale=10) # generates 100 random observations # fit a gamlss model # gamlss(dat~1,family=GA) # fits a constant for each parameter mu and sigma of the gamma distribution newdata<-rGA(1000,mu=1,sigma=1) # generates 1000 random observations hist(newdata) rm(dat,newdata)
GA()# gives information about the default links for the gamma distribution # dat<-rgamma(100, shape=1, scale=10) # generates 100 random observations # fit a gamlss model # gamlss(dat~1,family=GA) # fits a constant for each parameter mu and sigma of the gamma distribution newdata<-rGA(1000,mu=1,sigma=1) # generates 1000 random observations hist(newdata) rm(dat,newdata)
The function GAF()
defines a gamma distribution family, which has three parameters. This is not the generalised gamma distribution which is called GG
. The third parameter here is to model the mean and variance relationship. The distribution can be fitted using the function gamlss()
. The mean of GAF
is equal to mu
. The variance is equal to sigma^2*mu^nu
so the standard deviation is sigma*mu^(nu/2)
. The function is design for cases where the variance is proportional to a power of the mean. This is an instance of the Taylor's power low, see Enki et al. (2017). The functions dGAF
, pGAF
, qGAF
and rGAF
define the density, distribution function,
quantile function and random generation for the GAF
parametrization of the gamma family.
GAF(mu.link = "log", sigma.link = "log", nu.link = "identity") dGAF(x, mu = 1, sigma = 1, nu = 2, log = FALSE) pGAF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qGAF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rGAF(n, mu = 1, sigma = 1, nu = 2)
GAF(mu.link = "log", sigma.link = "log", nu.link = "identity") dGAF(x, mu = 1, sigma = 1, nu = 2, log = FALSE) pGAF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qGAF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rGAF(n, mu = 1, sigma = 1, nu = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of power parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The parametrization of the gamma family given in the function GAF()
is:
for ,
where
and
see pp. 442-443 of Rigby et al. (2019).
GAF()
returns a gamlss.family
object which can be used to fit the gamma family in the gamlss()
function.
For the function GAF()
, is the mean and
is the standard deviation of the gamma family.
The
GAF
is design for fitting regression type models where the variance is proportional to a power of the mean.
Note that because the high correlation between the sigma
and the nu
parameter the mixed()
method should be used in the fitting.
Mikis Stasinopoulos, Robert Rigby and Fernanda De Bastiani
Enki, D G, Noufaily, A., Farrington, P., Garthwaite, P., Andrews, N. and Charlett, A. (2017) Taylor's power law and the statistical modelling of infectious disease surveillance data, Journal of the Royal Statistical Society: Series A (Statistics in Society), volume=180, number=1, pages=45-72.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07..
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
GAF() ## Not run: m1<-gamlss(y~poly(x,2),data=abdom,family=GAF, method=mixed(1,100), c.crit=0.00001) # using RS() m2<-gamlss(y~poly(x,2),data=abdom,family=GAF, n.cyc=5000, c.crit=0.00001) # the estimates of nu slightly different fitted(m1, "nu")[1] fitted(m2, "nu")[1] # global deviance almost identical AIC(m1, m2) ## End(Not run)
GAF() ## Not run: m1<-gamlss(y~poly(x,2),data=abdom,family=GAF, method=mixed(1,100), c.crit=0.00001) # using RS() m2<-gamlss(y~poly(x,2),data=abdom,family=GAF, n.cyc=5000, c.crit=0.00001) # the estimates of nu slightly different fitted(m1, "nu")[1] fitted(m2, "nu")[1] # global deviance almost identical AIC(m1, m2) ## End(Not run)
A single class and corresponding methods encompassing all distributions from the gamlss.dist package using the workflow from the distributions3 package.
GAMLSS(family, mu, sigma, tau, nu)
GAMLSS(family, mu, sigma, tau, nu)
family |
character. Name of a GAMLSS family provided by gamlss.dist, e.g.,
|
mu |
numeric. GAMLSS |
sigma |
numeric. GAMLSS |
tau |
numeric. GAMLSS |
nu |
numeric. GAMLSS |
The S3 class GAMLSS
provides a unified workflow based on the
distributions3 package (see Zeileis et al. 2022) for all distributions
from the gamlss.dist package. The idea is that from fitted
gamlss
model objects predicted probability distributions
can be obtained for which moments (mean, variance, etc.), probabilities,
quantiles, etc. can be obtained with corresponding generic functions.
The constructor function GAMLSS
sets up a distribution
object, representing a distribution from the GAMLSS (generalized additive
model of location, scale, and shape) framework by the corresponding parameters
plus a family
attribute, e.g., NO
for the
normal distribution or BI
for the binomial
distribution. There can be up to four parameters, called mu
(often some
sort of location parameter), sigma
(often some sort of scale parameter),
tau
and nu
(other parameters, e.g., capturing shape, etc.).
All parameters can also be vectors, so that it is possible to define a vector of GAMLSS distributions from the same family with potentially different parameters. All parameters need to have the same length or must be scalars (i.e., of length 1) which are then recycled to the length of the other parameters.
Note that not all distributions use all four parameters, i.e., some use just a
subset. In that case, the corresponding arguments in GAMLSS
should be
unspecified, NULL
, or NA
.
For the GAMLSS
distribution objects there is a wide range
of standard methods available to the generics provided in the distributions3
package: pdf
and log_pdf
for the (log-)density (PDF), cdf
for the probability
from the cumulative distribution function (CDF), quantile
for quantiles,
random
for simulating random variables,
and support
for the support interval
(minimum and maximum). Internally, these methods rely on the usual d/p/q/r
functions provided in gamlss.dist, see the manual pages of the individual
families. The methods is_discrete
and
is_continuous
can be used to query whether the
distributions are discrete on the entire support or continuous on the entire
support, respectively.
See the examples below for an illustration of the workflow for the class and methods.
A GAMLSS
object, inheriting from distribution
.
Zeileis A, Lang MN, Hayes A (2022). “distributions3: From Basic Probability to Probabilistic Regression.” Presented at useR! 2022 - The R User Conference. Slides, video, vignette, code at https://www.zeileis.org/news/user2022/.
## package and random seed library("distributions3") set.seed(6020) ## three Weibull distributions X <- GAMLSS("WEI", mu = c(1, 1, 2), sigma = c(1, 2, 2)) X ## moments mean(X) variance(X) ## support interval (minimum and maximum) support(X) is_discrete(X) is_continuous(X) ## simulate random variables random(X, 5) ## histograms of 1,000 simulated observations x <- random(X, 1000) hist(x[1, ], main = "WEI(1,1)") hist(x[2, ], main = "WEI(1,2)") hist(x[3, ], main = "WEI(2,2)") ## probability density function (PDF) and log-density (or log-likelihood) x <- c(2, 2, 1) pdf(X, x) pdf(X, x, log = TRUE) log_pdf(X, x) ## cumulative distribution function (CDF) cdf(X, x) ## quantiles quantile(X, 0.5) ## cdf() and quantile() are inverses cdf(X, quantile(X, 0.5)) quantile(X, cdf(X, 1)) ## all methods above can either be applied elementwise or for ## all combinations of X and x, if length(X) = length(x), ## also the result can be assured to be a matrix via drop = FALSE p <- c(0.05, 0.5, 0.95) quantile(X, p, elementwise = FALSE) quantile(X, p, elementwise = TRUE) quantile(X, p, elementwise = TRUE, drop = FALSE) ## compare theoretical and empirical mean from 1,000 simulated observations cbind( "theoretical" = mean(X), "empirical" = rowMeans(random(X, 1000)) )
## package and random seed library("distributions3") set.seed(6020) ## three Weibull distributions X <- GAMLSS("WEI", mu = c(1, 1, 2), sigma = c(1, 2, 2)) X ## moments mean(X) variance(X) ## support interval (minimum and maximum) support(X) is_discrete(X) is_continuous(X) ## simulate random variables random(X, 5) ## histograms of 1,000 simulated observations x <- random(X, 1000) hist(x[1, ], main = "WEI(1,1)") hist(x[2, ], main = "WEI(1,2)") hist(x[3, ], main = "WEI(2,2)") ## probability density function (PDF) and log-density (or log-likelihood) x <- c(2, 2, 1) pdf(X, x) pdf(X, x, log = TRUE) log_pdf(X, x) ## cumulative distribution function (CDF) cdf(X, x) ## quantiles quantile(X, 0.5) ## cdf() and quantile() are inverses cdf(X, quantile(X, 0.5)) quantile(X, cdf(X, 1)) ## all methods above can either be applied elementwise or for ## all combinations of X and x, if length(X) = length(x), ## also the result can be assured to be a matrix via drop = FALSE p <- c(0.05, 0.5, 0.95) quantile(X, p, elementwise = FALSE) quantile(X, p, elementwise = TRUE) quantile(X, p, elementwise = TRUE, drop = FALSE) ## compare theoretical and empirical mean from 1,000 simulated observations cbind( "theoretical" = mean(X), "empirical" = rowMeans(random(X, 1000)) )
GAMLSS families are the current available distributions that can be fitted using the gamlss()
function.
gamlss.family(object,...) as.gamlss.family(object) as.family(object) ## S3 method for class 'gamlss.family' print(x,...)
gamlss.family(object,...) as.gamlss.family(object) as.family(object) ## S3 method for class 'gamlss.family' print(x,...)
object |
a gamlss family object e.g. |
x |
a gamlss family object e.g. |
... |
further arguments passed to or from other methods. |
There are several distributions available for the response variable in the gamlss
function.
The following table display their names and their abbreviations in R
. Note that the different distributions can be fitted
using their R
abbreviations
(and optionally excluding the brackets) i.e. family=BI(), family=BI are equivalent.
Distributions | R names | No of parameters |
Beta | BE() |
2 |
Beta Binomial | BB() |
2 |
Beta negative binomial | BNB() |
3 |
Beta one inflated | BEOI() |
3 |
Beta zero inflated | BEZI() |
3 |
Beta inflated | BEINF() |
4 |
Binomial | BI() |
1 |
Box-Cox Cole and Green | BCCG() |
3 |
Box-Cox Power Exponential | BCPE() |
4 |
Box-Cox-t | BCT() |
4 |
Delaport | DEL() |
3 |
Discrete Burr XII | DBURR12() |
3 |
Double Poisson | DPO() |
2 |
Double binomial | DBI() |
2 |
Exponential | EXP() |
1 |
Exponential Gaussian | exGAUS() |
3 |
Exponential generalized Beta type 2 | EGB2() |
4 |
Gamma | GA() |
2 |
Generalized Beta type 1 | GB1() |
4 |
Generalized Beta type 2 | GB2() |
4 |
Generalized Gamma | GG() |
3 |
Generalized Inverse Gaussian | GIG() |
3 |
Generalized t | GT() |
4 |
Geometric | GEOM() |
1 |
Geometric (original) | GEOMo() |
1 |
Gumbel | GU() |
2 |
Inverse Gamma | IGAMMA() |
2 |
Inverse Gaussian | IG() |
2 |
Johnson's SU | JSU() |
4 |
Logarithmic | LG() |
1 |
Logistic | LO() |
2 |
Logit-Normal | LOGITNO() |
2 |
log-Normal | LOGNO() |
2 |
log-Normal (Box-Cox) | LNO() |
3 (1 fixed) |
Negative Binomial type I | NBI() |
2 |
Negative Binomial type II | NBII() |
2 |
Negative Binomial family | NBF() |
3 |
Normal Exponential t | NET() |
4 (2 fixed) |
Normal | NO() |
2 |
Normal Family | NOF() |
3 (1 fixed) |
Normal Linear Quadratic | LQNO() |
2 |
Pareto type 2 | PARETO2() |
2 |
Pareto type 2 original | PARETO2o() |
2 |
Power Exponential | PE() |
3 |
Power Exponential type 2 | PE2() |
3 |
Poison | PO() |
1 |
Poisson inverse Gaussian | PIG() |
2 |
Reverse generalized extreme | RGE() |
3 |
Reverse Gumbel | RG() |
2 |
Skew Power Exponential type 1 | SEP1() |
4 |
Skew Power Exponential type 2 | SEP2() |
4 |
Skew Power Exponential type 3 | SEP3() |
4 |
Skew Power Exponential type 4 | SEP4() |
4 |
Shash | SHASH() |
4 |
Shash original | SHASHo() |
4 |
Shash original 2 | SHASH() |
4 |
Sichel (original) | SI() |
3 |
Sichel (mu as the maen) | SICHEL() |
3 |
Simplex | SIMPLEX() |
2 |
Skew t type 1 | ST1() |
3 |
Skew t type 2 | ST2() |
3 |
Skew t type 3 | ST3() |
3 |
Skew t type 4 | ST4() |
3 |
Skew t type 5 | ST5() |
3 |
t-distribution | TF() |
3 |
Waring | WARING() |
1 |
Weibull | WEI() |
2 |
Weibull(PH parameterization) | WEI2() |
2 |
Weibull (mu as mean) | WEI3() |
2 |
Yule | YULE() |
1 |
Zero adjusted binomial | ZABI() |
2 |
Zero adjusted beta neg. bin. | ZABNB() |
4 |
Zero adjusted IG | ZAIG() |
2 |
Zero adjusted logarithmic | ZALG() |
2 |
Zero adjusted neg. bin. | ZANBI() |
3 |
Zero adjusted poisson | ZAP() |
2 |
Zero adjusted Sichel | ZASICHEL()
|
4 |
Zero adjusted Zipf | ZAZIPF() |
2 |
Zero inflated binomial | ZIBI() |
2 |
Zero inflated beta neg. bin. | ZIBNB() |
4 |
Zero inflated neg. bin. | ZINBI() |
3 |
Zero inflated poisson | ZIP() |
2 |
Zero inf. poiss.(mu as mean) | ZIP2() |
2 |
Zero inflated PIG | ZIPIG() |
3 |
Zero inflated Sichel | ZISICHEL()
|
4 |
Zipf | ZIPF() |
1 |
Note that some of the distributions are in the package gamlss.dist
.
The parameters of the distributions are in order, mu
for location, sigma
for scale (or dispersion),
and nu
and tau
for shape.
More specifically for the BCCG
family mu
is the median, sigma
approximately the coefficient of variation, and nu
the skewness parameter.
The parameters for BCPE
distribution have the same interpretation with the extra fourth parameter tau
modelling
the kurtosis of the distribution. The parameters for BCT have the same interpretation except that
is
approximately the coefficient of variation.
All of the distribution in the above list are also provided with the corresponding d
, p
, q
and r
functions
for density (pdf), distribution function (cdf), quantile function and random generation function respectively, (see individual distribution for details).
The above GAMLSS families return an object which is of type gamlss.family
. This object is used to define the family in the gamlss()
fit.
More distributions will be documented in later GAMLSS releases. Further user defined distributions can be incorporate relatively easy, see, for example, the help documentation accompanying the gamlss library.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
BE
,BB
,BEINF
,BI
,LNO
,BCT
,
BCPE
,BCCG
,
GA
,GU
,JSU
,IG
,LO
,
NBI
,NBII
,NO
,PE
,PO
,
RG
,PIG
,TF
,WEI
,WEI2
,
ZIP
normal<-NO(mu.link="log", sigma.link="log") normal
normal<-NO(mu.link="log", sigma.link="log") normal
This function defines the generalized beta type 1 distribution, a four parameter distribution.
The function GB1
creates a gamlss.family
object which can be used to fit the distribution using the function
gamlss()
. Note the range of the response variable is from zero to one.
The functions dGB1
,
GB1
, qGB1
and rGB1
define the density,
distribution function, quantile function and random
generation for the generalized beta type 1 distribution.
GB1(mu.link = "logit", sigma.link = "logit", nu.link = "log", tau.link = "log") dGB1(x, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, log = FALSE) pGB1(q, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) qGB1(p, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) rGB1(n, mu = 0.5, sigma = 0.4, nu = 1, tau = 1)
GB1(mu.link = "logit", sigma.link = "logit", nu.link = "log", tau.link = "log") dGB1(x, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, log = FALSE) pGB1(q, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) qGB1(p, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) rGB1(n, mu = 0.5, sigma = 0.4, nu = 1, tau = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the Generalized Beta type 1, (GB1
), is defined as
where ,
,
,
,
and where
and
, and
,
. Note the
,
see pp. 464-465 of Rigby et al. (2019).
GB1()
returns a gamlss.family
object which can be used to fit the GB1 distribution in the
gamlss()
function.
dGB1()
gives the density, pGB1()
gives the distribution
function, qGB1()
gives the quantile function, and rGB1()
generates random deviates.
The qSHASH and rSHASH are slow since they are relying on golden section for finding the quantiles
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC,doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
GB1() # y<- rGB1(200, mu=.1, sigma=.6, nu=1, tau=4) hist(y) # library(gamlss) # histDist(y, family=GB1, n.cyc=60) curve(dGB1(x, mu=.1 ,sigma=.6, nu=1, tau=4), 0.01, 0.99, main = "The GB1 density mu=0.1, sigma=.6, nu=1, tau=4")
GB1() # y<- rGB1(200, mu=.1, sigma=.6, nu=1, tau=4) hist(y) # library(gamlss) # histDist(y, family=GB1, n.cyc=60) curve(dGB1(x, mu=.1 ,sigma=.6, nu=1, tau=4), 0.01, 0.99, main = "The GB1 density mu=0.1, sigma=.6, nu=1, tau=4")
This function defines the generalized beta type 2 distribution, a four parameter distribution.
The function GB2
creates a gamlss.family
object which can be used to fit the distribution using the function
gamlss()
. The response variable is
in the range from zero to infinity.
The functions dGB2
,
GB2
, qGB2
and rGB2
define the density,
distribution function, quantile function and random
generation for the generalized beta type 2 distribution.
The generalised Pareto GP
distribution is defined by setting the parameters sigma
and nu
of the GB2
distribution to 1.
GB2(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log") dGB2(x, mu = 1, sigma = 1, nu = 1, tau = 0.5, log = FALSE) pGB2(q, mu = 1, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE) qGB2(p, mu = 1, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE) rGB2(n, mu = 1, sigma = 1, nu = 1, tau = 0.5) GP(mu.link = "log", sigma.link = "log") dGP(x, mu = 1, sigma = 1, log = FALSE) pGP(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qGP(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rGP(n, mu = 1, sigma = 1)
GB2(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log") dGB2(x, mu = 1, sigma = 1, nu = 1, tau = 0.5, log = FALSE) pGB2(q, mu = 1, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE) qGB2(p, mu = 1, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE) rGB2(n, mu = 1, sigma = 1, nu = 1, tau = 0.5) GP(mu.link = "log", sigma.link = "log") dGP(x, mu = 1, sigma = 1, log = FALSE) pGP(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qGP(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rGP(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the Generalized Beta type 2, (GB2
), is defined as
where ,
,
,
and
see pp. 452-453 of Rigby et al. (2019).
Note that by setting we have the Pearson type VI, by setting
we have the Burr type XII and by setting
the Burr type III.
GB2()
returns a gamlss.family
object which can be used to fit the GB2 distribution in the
gamlss()
function.
dGB2()
gives the density, pGB2()
gives the distribution
function, qGB2()
gives the quantile function, and rGB2()
generates random deviates.
The qSHASH and rSHASH are slow since they are relying on golden section for finding the quantiles
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
GB2() # y<- rGB2(200, mu=5, sigma=2, nu=1, tau=1) library(MASS) truehist(y) fx<-dGB2(seq(0.01, 20, length=200), mu=5 ,sigma=2, nu=1, tau=1) lines(seq(0.01,20,length=200),fx) integrate(function(x) x*dGB2(x=x, mu=5, sigma=2, nu=1, tau=1), 0, Inf) mean(y) curve(dGB2(x, mu=5 ,sigma=2, nu=1, tau=1), 0.01, 20, main = "The GB2 density mu=5, sigma=2, nu=1, tau=4")
GB2() # y<- rGB2(200, mu=5, sigma=2, nu=1, tau=1) library(MASS) truehist(y) fx<-dGB2(seq(0.01, 20, length=200), mu=5 ,sigma=2, nu=1, tau=1) lines(seq(0.01,20,length=200),fx) integrate(function(x) x*dGB2(x=x, mu=5, sigma=2, nu=1, tau=1), 0, Inf) mean(y) curve(dGB2(x, mu=5 ,sigma=2, nu=1, tau=1), 0.01, 20, main = "The GB2 density mu=5, sigma=2, nu=1, tau=4")
There are five functions here. Only the functions Family
and gen.Family
should be used (see details).
Family.d(family = "NO", type = c("log", "logit"), ...) Family.p(family = "NO", type = c("log", "logit"), ...) Family.q(family = "NO", type = c("log", "logit"), ...) Family.r(family = "NO", type = c("log", "logit"), ...) Family(family = "NO", type = c("log", "logit"), local = TRUE, ...) gen.Family(family = "NO", type = c("log", "logit"), ...)
Family.d(family = "NO", type = c("log", "logit"), ...) Family.p(family = "NO", type = c("log", "logit"), ...) Family.q(family = "NO", type = c("log", "logit"), ...) Family.r(family = "NO", type = c("log", "logit"), ...) Family(family = "NO", type = c("log", "logit"), local = TRUE, ...) gen.Family(family = "NO", type = c("log", "logit"), ...)
family |
a continuous |
type |
the type of transformation only "log" and "logit" are allowed |
local |
It is TRUE if is called within |
... |
for passing extra arguments |
The function gen.Family
creates the standard d,p,q,r
functions for the distribution plus the fitting gamlss.family
. For example gen.Family("NO", "logit")
will generate the functions
dlogitNO()
, plogitNO()
, qlogitNO()
, rlogitNO()
and dlogitNO()
.
The latest function can be used in family
argument of gamlss()
to fit a logic-Normal distribution i.e. family=logitNO
.
The same fitting can be achieved by using family=Family("NO", "logit")
. Here the required dlogitNO()
, plogitNO()
and
logitNO()
functions are generated locally within the gamlss()
environment.
The function gen.Family
returns the d
, p
, q
r
functions plus the fitting function.
Mikis Stasinopoulos and Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
# generating a log t distribution gen.Family("TF") # plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dlogTF(x, mu=0), 0, 10) curve(plogTF(x, mu=0), 0, 10) curve(qlogTF(x, mu=0), 0, 1) Y<- rlogTF(200) hist(Y) par(op) # different mu curve(dlogTF(x, mu=-1, sigma=1, nu=10), 0, 5, ylim=c(0,1)) curve(dlogTF(x, mu=0, sigma=1, nu=10), 0, 5, add=TRUE, col="red", lty=2) curve(dlogTF(x, mu=1, sigma=1, nu=10), 0, 5, add=TRUE, col="blue", lty=3) # different sigma curve(dlogTF(x, mu=0, sigma=.5, nu=10), 0, 5, ylim=c(0,1)) curve(dlogTF(x, mu=0, sigma=1, nu=10), 0, 5, add=TRUE, col="red", lty=2) curve(dlogTF(x, mu=0, sigma=2, nu=10), 0, 5, add=TRUE, col="blue", lty=3) # different degrees of freedom nu curve(dlogTF(x, mu=0, sigma=1, nu=1), 0, 5, ylim=c(0,.8), n = 1001) curve(dlogTF(x, mu=0, sigma=1, nu=2), 0, 5, add=TRUE, col="red", lty=2) curve(dlogTF(x, mu=0, sigma=1, nu=5), 0, 5, add=TRUE, col="blue", lty=3) # generating a logit t distribution gen.Family("TF", "logit") # plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dlogitTF(x, mu=0), 0, 1) curve(plogitTF(x, mu=0), 0, 1) curve(qlogitTF(x, mu=0), 0, 1) abline(v=1) Y<- rlogitTF(200) hist(Y) par(op) # different mu curve(dlogitTF(x, mu=-2, sigma=1, nu=10), 0, 1, ylim=c(0,5)) curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0, 1, add=TRUE, col="red", lty=2) curve(dlogitTF(x, mu=2, sigma=1, nu=10), 0, 1, add=TRUE, col="blue", lty=3) # different sigma curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0, 1, ylim=c(0,2.5)) curve(dlogitTF(x, mu=0, sigma=2, nu=10), 0, 1, add=TRUE, col="red", lty=2) curve(dlogitTF(x, mu=0, sigma=.7, nu=10), 0, 1, add=TRUE, col="blue", lty=3) # different degrees of freedom nu curve(dlogitTF(x, mu=0, sigma=1, nu=1), 0, 1, ylim=c(0,1.6)) curve(dlogitTF(x, mu=0, sigma=1, nu=2), 0, 1, add=TRUE, col="red", lty=2) curve(dlogitTF(x, mu=0, sigma=1, nu=5), 0, 1, add=TRUE, col="blue", lty=3)
# generating a log t distribution gen.Family("TF") # plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dlogTF(x, mu=0), 0, 10) curve(plogTF(x, mu=0), 0, 10) curve(qlogTF(x, mu=0), 0, 1) Y<- rlogTF(200) hist(Y) par(op) # different mu curve(dlogTF(x, mu=-1, sigma=1, nu=10), 0, 5, ylim=c(0,1)) curve(dlogTF(x, mu=0, sigma=1, nu=10), 0, 5, add=TRUE, col="red", lty=2) curve(dlogTF(x, mu=1, sigma=1, nu=10), 0, 5, add=TRUE, col="blue", lty=3) # different sigma curve(dlogTF(x, mu=0, sigma=.5, nu=10), 0, 5, ylim=c(0,1)) curve(dlogTF(x, mu=0, sigma=1, nu=10), 0, 5, add=TRUE, col="red", lty=2) curve(dlogTF(x, mu=0, sigma=2, nu=10), 0, 5, add=TRUE, col="blue", lty=3) # different degrees of freedom nu curve(dlogTF(x, mu=0, sigma=1, nu=1), 0, 5, ylim=c(0,.8), n = 1001) curve(dlogTF(x, mu=0, sigma=1, nu=2), 0, 5, add=TRUE, col="red", lty=2) curve(dlogTF(x, mu=0, sigma=1, nu=5), 0, 5, add=TRUE, col="blue", lty=3) # generating a logit t distribution gen.Family("TF", "logit") # plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dlogitTF(x, mu=0), 0, 1) curve(plogitTF(x, mu=0), 0, 1) curve(qlogitTF(x, mu=0), 0, 1) abline(v=1) Y<- rlogitTF(200) hist(Y) par(op) # different mu curve(dlogitTF(x, mu=-2, sigma=1, nu=10), 0, 1, ylim=c(0,5)) curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0, 1, add=TRUE, col="red", lty=2) curve(dlogitTF(x, mu=2, sigma=1, nu=10), 0, 1, add=TRUE, col="blue", lty=3) # different sigma curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0, 1, ylim=c(0,2.5)) curve(dlogitTF(x, mu=0, sigma=2, nu=10), 0, 1, add=TRUE, col="red", lty=2) curve(dlogitTF(x, mu=0, sigma=.7, nu=10), 0, 1, add=TRUE, col="blue", lty=3) # different degrees of freedom nu curve(dlogitTF(x, mu=0, sigma=1, nu=1), 0, 1, ylim=c(0,1.6)) curve(dlogitTF(x, mu=0, sigma=1, nu=2), 0, 1, add=TRUE, col="red", lty=2) curve(dlogitTF(x, mu=0, sigma=1, nu=5), 0, 1, add=TRUE, col="blue", lty=3)
The functions GEOMo()
and GEOM()
define two parametrizations of the geometric distribution. The geometric distribution is a one parameter
distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The mean of GEOM()
is equal to the parameter mu
.
The functions dGEOM
, pGEOM
, qGEOM
and rGEOM
define
the density, distribution function, quantile function and random generation for
the GEOM
parameterization of the Geometric distribution.
GEOM(mu.link = "log") dGEOM(x, mu = 2, log = FALSE) pGEOM(q, mu = 2, lower.tail = TRUE, log.p = FALSE) qGEOM(p, mu = 2, lower.tail = TRUE, log.p = FALSE) rGEOM(n, mu = 2) GEOMo(mu.link = "logit") dGEOMo(x, mu = 0.5, log = FALSE) pGEOMo(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE) qGEOMo(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE) rGEOMo(n, mu = 0.5)
GEOM(mu.link = "log") dGEOM(x, mu = 2, log = FALSE) pGEOM(q, mu = 2, lower.tail = TRUE, log.p = FALSE) qGEOM(p, mu = 2, lower.tail = TRUE, log.p = FALSE) rGEOM(n, mu = 2) GEOMo(mu.link = "logit") dGEOMo(x, mu = 0.5, log = FALSE) pGEOMo(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE) qGEOMo(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE) rGEOMo(n, mu = 0.5)
mu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
The parameterization of the GAMLSS geometric distribution in the function
GEOM
is:
for and
, see pp 472-473 of Rigby et al. (2019). Note that in this parametrization
.
The parameterization of the original geometric distribution, GEOMo
is
for and
, see pp 473-474 of Rigby et al. (2019). In this parametrization
.
returns a gamlss.family
object which can be used to fit a Geometric distribution in the gamlss()
function.
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.
Johnson, N. L., Kemp, A. W., and Kotz, S. (2005). Univariate discrete distributions. Wiley.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
par(mfrow=c(2,2)) y<-seq(0,20,1) plot(y, dGEOM(y), type="h") q <- seq(0, 20, 1) plot(q, pGEOM(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qGEOM(p), type="s") dat <- rGEOM(100) hist(dat) #summary(gamlss(dat~1, family=GEOM)) par(mfrow=c(2,2)) y<-seq(0,20,1) plot(y, dGEOMo(y), type="h") q <- seq(0, 20, 1) plot(q, pGEOMo(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qGEOMo(p), type="s") dat <- rGEOMo(100) hist(dat) #summary(gamlss(dat~1, family="GE"))
par(mfrow=c(2,2)) y<-seq(0,20,1) plot(y, dGEOM(y), type="h") q <- seq(0, 20, 1) plot(q, pGEOM(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qGEOM(p), type="s") dat <- rGEOM(100) hist(dat) #summary(gamlss(dat~1, family=GEOM)) par(mfrow=c(2,2)) y<-seq(0,20,1) plot(y, dGEOMo(y), type="h") q <- seq(0, 20, 1) plot(q, pGEOMo(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qGEOMo(p), type="s") dat <- rGEOMo(100) hist(dat) #summary(gamlss(dat~1, family="GE"))
The function GG defines the generalized gamma distribution, a three parameter distribution,
for a gamlss.family object to be used in GAMLSS fitting using the function gamlss().
The parameterization used has a rather compicated mean function which is depends on all the paramneters of the distribution, mu
, sigma
and nu
, see page 444 of Rigby et al. (2019). The functions 'dGG', 'pGG', 'qGG' and 'rGG' define the density,
distribution function, quantile function and random generation for the specific parameterization
of the generalized gamma distribution defined by function GG.
GG(mu.link = "log", sigma.link = "log", nu.link = "identity") dGG(x, mu=1, sigma=0.5, nu=1, log = FALSE) pGG(q, mu=1, sigma=0.5, nu=1, lower.tail = TRUE, log.p = FALSE) qGG(p, mu=1, sigma=0.5, nu=1, lower.tail = TRUE, log.p = FALSE ) rGG(n, mu=1, sigma=0.5, nu=1)
GG(mu.link = "log", sigma.link = "log", nu.link = "identity") dGG(x, mu=1, sigma=0.5, nu=1, log = FALSE) pGG(q, mu=1, sigma=0.5, nu=1, lower.tail = TRUE, log.p = FALSE) qGG(p, mu=1, sigma=0.5, nu=1, lower.tail = TRUE, log.p = FALSE ) rGG(n, mu=1, sigma=0.5, nu=1)
mu.link |
Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity" |
sigma.link |
Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are "inverse" and "identity" |
nu.link |
Defines the nu.link, with "identity" link as the default for the sigma parameter,
other links are |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of shape parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
n |
number of observations. If length(n) > 1, the length is taken to be the number required |
The specific parameterization of the generalized gamma distribution used in GG is
where ,
for y>0,
,
and
see pp. 443-444 of Rigby et al. (2019). Note that for
the distribution is log normal.
GG() returns a gamlss.family object which can be used to fit a generalized gamma distribution in the gamlss() function. dGG() gives the density, pGG() gives the distribution function, qGG() gives the quantile function, and rGG() generates random deviates.
Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan
Lopatatzidis, A. and Green, P. J. (2000), Nonparametric quantile regression using the gamma distribution, unpublished.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
y<-rGG(100,mu=1,sigma=0.1, nu=-.5) # generates 100 random observations hist(y) # library(gamlss) #histDist(y, family=GG) #m1 <-gamlss(y~1,family=GG) #prof.dev(m1, "nu", min=-2, max=2, step=0.2)
y<-rGG(100,mu=1,sigma=0.1, nu=-.5) # generates 100 random observations hist(y) # library(gamlss) #histDist(y, family=GG) #m1 <-gamlss(y~1,family=GG) #prof.dev(m1, "nu", min=-2, max=2, step=0.2)
The function GIG defines the generalized inverse gaussian distribution, a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions DIG
, pGIG
, GIG
and rGIG
define the density,
distribution function, quantile function and random generation for the specific parameterization
of the generalized inverse gaussian distribution defined by function GIG.
GIG(mu.link = "log", sigma.link = "log", nu.link = "identity") dGIG(x, mu=1, sigma=1, nu=1, log = FALSE) pGIG(q, mu=1, sigma=1, nu=1, lower.tail = TRUE, log.p = FALSE) qGIG(p, mu=1, sigma=1, nu=1, lower.tail = TRUE, log.p = FALSE) rGIG(n, mu=1, sigma=1, nu=1, ...)
GIG(mu.link = "log", sigma.link = "log", nu.link = "identity") dGIG(x, mu=1, sigma=1, nu=1, log = FALSE) pGIG(q, mu=1, sigma=1, nu=1, lower.tail = TRUE, log.p = FALSE) qGIG(p, mu=1, sigma=1, nu=1, lower.tail = TRUE, log.p = FALSE) rGIG(n, mu=1, sigma=1, nu=1, ...)
mu.link |
Defines the mu.link, with "log" link as the default for the |
sigma.link |
Defines the sigma.link, with "log" link as the default for the |
nu.link |
Defines the nu.link, with "identity" link as the default for the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of shape parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
n |
number of observations. If length(n) > 1, the length is taken to be the number required |
... |
for extra arguments |
The specific parameterization of the generalized inverse gaussian distribution used in GIG is
where ,
for y>0,
,
and
see pp 445-446 of Rigby et al. (2019).
GIG() returns a gamlss.family object which can be used to fit a generalized inverse gaussian distribution in the gamlss() function. DIG() gives the density, pGIG() gives the distribution function, GIG() gives the quantile function, and rGIG() generates random deviates.
Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Jorgensen B. (1982) Statistical properties of the generalized inverse Gaussian distribution, Series: Lecture notes in statistics; 9, New York : Springer-Verlag.
(see also https://www.gamlss.com/).
y<-rGIG(100,mu=1,sigma=1, nu=-0.5) # generates 1000 random observations hist(y) # library(gamlss) # histDist(y, family=GIG)
y<-rGIG(100,mu=1,sigma=1, nu=-0.5) # generates 1000 random observations hist(y) # library(gamlss) # histDist(y, family=GIG)
The GPO()
function defines the generalised Poisson distribution, a two parameter discrete distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dGPO
, pGPO
, qGPO
and rGPO
define the density, distribution function, quantile function and random
generation for the Delaporte GPO()
, distribution.
GPO(mu.link = "log", sigma.link = "log") dGPO(x, mu = 1, sigma = 1, log = FALSE) pGPO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qGPO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rGPO(n, mu = 1, sigma = 1, max.value = 10000)
GPO(mu.link = "log", sigma.link = "log") dGPO(x, mu = 1, sigma = 1, log = FALSE) pGPO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qGPO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rGPO(n, mu = 1, sigma = 1, max.value = 10000)
mu.link |
Defines the |
sigma.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive |
sigma |
vector of positive dispersion parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
The probability function of this parametrization of the Generalised Poisson distribution is given by
for
where
and
see pp. 481-483 of Rigby et al. (2019). The advantage of this parametrisation is that
but the disadvantage is that we can NOT model underdispersion. For undedispersion see the
DBURR12
distribution.
Returns a gamlss.family
object which can be used to fit a Generalised Poisson distribution in the gamlss()
function.
Rigby, R. A., Stasinopoulos D. M.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gamlss.family
, PO
, DPO
GPO()# gives information about the default links for the #plot the pdf using plot plot(function(y) dGPO(y, mu=10, sigma=1 ), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pGPO(seq(from=0,to=100), mu=10, sigma=1), type="h") # cdf # generate random sample tN <- table(Ni <- rGPO(100, mu=5, sigma=1)) r <- barplot(tN, col='lightblue')
GPO()# gives information about the default links for the #plot the pdf using plot plot(function(y) dGPO(y, mu=10, sigma=1 ), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pGPO(seq(from=0,to=100), mu=10, sigma=1), type="h") # cdf # generate random sample tN <- table(Ni <- rGPO(100, mu=5, sigma=1)) r <- barplot(tN, col='lightblue')
This function defines the generalized t distribution, a four parameter distribution,
for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
.
The functions dGT
,
pGT
, qGT
and rGT
define the density,
distribution function, quantile function and random
generation for the generalized t distribution.
GT(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dGT(x, mu = 0, sigma = 1, nu = 3, tau = 1.5, log = FALSE) pGT(q, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE, log.p = FALSE) qGT(p, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE, log.p = FALSE) rGT(n, mu = 0, sigma = 1, nu = 3, tau = 1.5)
GT(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dGT(x, mu = 0, sigma = 1, nu = 3, tau = 1.5, log = FALSE) pGT(q, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE, log.p = FALSE) qGT(p, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE, log.p = FALSE) rGT(n, mu = 0, sigma = 1, nu = 3, tau = 1.5)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the generalized t distribution, (GT
), , is defined as
where ,
,
,
and
, see pp. 387-388 of Rigby et al. (2019).
GT()
returns a gamlss.family
object which can be used to fit the GT distribution in the
gamlss()
function.
dGT()
gives the density, pGT()
gives the distribution
function, qGT()
gives the quantile function, and rGT()
generates random deviates.
The qGT and rGT are slow since they are relying on optimization for finding the quantiles
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
(see also https://www.gamlss.com/).
GT() # y<- rGT(200, mu=5, sigma=1, nu=1, tau=4) hist(y) curve(dGT(x, mu=5 ,sigma=2,nu=1, tau=4), -2, 11, main = "The GT density mu=5 ,sigma=1, nu=1, tau=4") # library(gamlss) # m1<-gamlss(y~1, family=GT)
GT() # y<- rGT(200, mu=5, sigma=1, nu=1, tau=4) hist(y) curve(dGT(x, mu=5 ,sigma=2,nu=1, tau=4), -2, 11, main = "The GT density mu=5 ,sigma=1, nu=1, tau=4") # library(gamlss) # m1<-gamlss(y~1, family=GT)
The function GU
defines the Gumbel distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the
function gamlss()
.
The functions dGU
, pGU
, qGU
and rGU
define the density, distribution function, quantile function and random
generation for the specific parameterization of the Gumbel distribution.
GU(mu.link = "identity", sigma.link = "log") dGU(x, mu = 0, sigma = 1, log = FALSE) pGU(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qGU(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rGU(n, mu = 0, sigma = 1)
GU(mu.link = "identity", sigma.link = "log") dGU(x, mu = 0, sigma = 1, log = FALSE) pGU(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qGU(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rGU(n, mu = 0, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The specific parameterization of the Gumbel distribution used in GU
is
for ,
and
, see pp. 366-367 of Rigby et al. (2019).
GU()
returns a gamlss.family
object which can be used to fit a Gumbel distribution in the gamlss()
function.
dGU()
gives the density, pGU()
gives the distribution
function, qGU()
gives the quantile function, and rGU()
generates random deviates.
The mean of the distribution is and the variance is
.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
plot(function(x) dGU(x, mu=0,sigma=1), -6, 3, main = "{Gumbel density mu=0,sigma=1}") GU()# gives information about the default links for the Gumbel distribution dat<-rGU(100, mu=10, sigma=2) # generates 100 random observations hist(dat) # library(gamlss) # gamlss(dat~1,family=GU) # fits a constant for each parameter mu and sigma
plot(function(x) dGU(x, mu=0,sigma=1), -6, 3, main = "{Gumbel density mu=0,sigma=1}") GU()# gives information about the default links for the Gumbel distribution dat<-rGU(100, mu=10, sigma=2) # generates 100 random observations hist(dat) # library(gamlss) # gamlss(dat~1,family=GU) # fits a constant for each parameter mu and sigma
The function hazardFun()
takes as an argument a gamlss.family
object and creates the hazard function for it. The function gen.hazard()
generates a hazard function called hNAME
where NAME
is a
gamlss.family
i.e. hGA()
.
hazardFun(family = "NO", ...) gen.hazard(family = "NO", ...)
hazardFun(family = "NO", ...) gen.hazard(family = "NO", ...)
family |
a |
... |
for passing extra arguments |
A hazard function.
Mikis Stasinopoulos, Bob Rigby and Vlasios Voudouris
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gen.hazard("WEI2") y<-seq(0,10,by=0.01) plot(hWEI2(y, mu=1, sigma=1)~y, type="l", col="black", ylab="h(y)", ylim=c(0,2.5)) lines(hWEI2(y, mu=1, sigma=1.2)~y, col="red",lt=2,lw=2) lines(hWEI2(y, mu=1, sigma=.5)~y, col="blue",lt=3,lw=2)
gen.hazard("WEI2") y<-seq(0,10,by=0.01) plot(hWEI2(y, mu=1, sigma=1)~y, type="l", col="black", ylab="h(y)", ylim=c(0,2.5)) lines(hWEI2(y, mu=1, sigma=1.2)~y, col="red",lt=2,lw=2) lines(hWEI2(y, mu=1, sigma=.5)~y, col="blue",lt=3,lw=2)
The function IG()
, or equivalently Inverse.Gaussian()
, defines the inverse Gaussian distribution,
a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
.
The functions dIG
, pIG
, qIG
and rIG
define the density, distribution function, quantile function and random
generation for the specific parameterization of the Inverse Gaussian distribution defined by function IG
.
IG(mu.link = "log", sigma.link = "log") dIG(x, mu = 1, sigma = 1, log = FALSE) pIG(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qIG(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rIG(n, mu = 1, sigma = 1, ...)
IG(mu.link = "log", sigma.link = "log") dIG(x, mu = 1, sigma = 1, log = FALSE) pIG(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qIG(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rIG(n, mu = 1, sigma = 1, ...)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
... |
|
Definition file for inverse Gaussian distribution.
for ,
and
see pp. 426-427 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a inverse Gaussian distribution in the gamlss()
function.
is the mean and
is the variance of the inverse Gaussian
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gamlss.family
, GA
, GIG
IG()# gives information about the default links for the normal distribution # library(gamlss) # data(rent) # gamlss(R~cs(Fl),family=IG, data=rent) # plot(function(x)dIG(x, mu=1,sigma=.5), 0.01, 6, main = "{Inverse Gaussian density mu=1,sigma=0.5}") plot(function(x)pIG(x, mu=1,sigma=.5), 0.01, 6, main = "{Inverse Gaussian cdf mu=1,sigma=0.5}")
IG()# gives information about the default links for the normal distribution # library(gamlss) # data(rent) # gamlss(R~cs(Fl),family=IG, data=rent) # plot(function(x)dIG(x, mu=1,sigma=.5), 0.01, 6, main = "{Inverse Gaussian density mu=1,sigma=0.5}") plot(function(x)pIG(x, mu=1,sigma=.5), 0.01, 6, main = "{Inverse Gaussian cdf mu=1,sigma=0.5}")
The function IGAMMA()
defines the Inverse Gamma distribution, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
, with parameters mu
(the mode) and sigma
. The functions dIGAMMA
, pIGAMMA
, qIGAMMA
and rIGAMMA
define the density, distribution function, quantile function and random generation for the IGAMMA
parameterization of the Inverse Gamma distribution.
IGAMMA(mu.link = "log", sigma.link="log") dIGAMMA(x, mu = 1, sigma = .5, log = FALSE) pIGAMMA(q, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE) qIGAMMA(p, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE) rIGAMMA(n, mu = 1, sigma = .5)
IGAMMA(mu.link = "log", sigma.link="log") dIGAMMA(x, mu = 1, sigma = .5, log = FALSE) pIGAMMA(q, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE) qIGAMMA(p, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE) rIGAMMA(n, mu = 1, sigma = .5)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
The parameterization of the Inverse Gamma distribution in the function IGAMMA
is
where
for
,
and
see pp. 424-426 of Rigby et al. (2019).
returns a gamlss.family object which can be used to fit an Inverse Gamma distribution in the gamlss()
function.
For the function IGAMMA()
, mu is the mode of the Inverse Gamma distribution.
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
par(mfrow=c(2,2)) y<-seq(0.2,20,0.2) plot(y, dIGAMMA(y), type="l") q <- seq(0.2, 20, 0.2) plot(q, pIGAMMA(q), type="l") p<-seq(0.0001,0.999,0.05) plot(p , qIGAMMA(p), type="l") dat <- rIGAMMA(50) hist(dat) #summary(gamlss(dat~1, family="IGAMMA"))
par(mfrow=c(2,2)) y<-seq(0.2,20,0.2) plot(y, dIGAMMA(y), type="l") q <- seq(0.2, 20, 0.2) plot(q, pIGAMMA(q), type="l") p<-seq(0.0001,0.999,0.05) plot(p , qIGAMMA(p), type="l") dat <- rIGAMMA(50) hist(dat) #summary(gamlss(dat~1, family="IGAMMA"))
This function defines the , a four parameter distribution, for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
. The functions dJSU
,
pJSU
, qJSU
and rJSU
define the density, distribution function, quantile function and random
generation for the the Johnson's Su distribution.
JSU(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dJSU(x, mu = 0, sigma = 1, nu = 1, tau = 1, log = FALSE) pJSU(q, mu = 0, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) qJSU(p, mu = 0, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) rJSU(n, mu = 0, sigma = 1, nu = 1, tau = 1)
JSU(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dJSU(x, mu = 0, sigma = 1, nu = 1, tau = 1, log = FALSE) pJSU(q, mu = 0, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) qJSU(p, mu = 0, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) rJSU(n, mu = 0, sigma = 1, nu = 1, tau = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the Jonhson's SU distribution, (JSU
), is defined as
for ,
,
,
and
and where
,
,
and
see pp. 393-394 of Rigby et al. (2019).
This is a reparameterization of the original Johnson Su distribution, Johnson (1954),
so the parameters mu
and sigma
are the mean and the standard deviation of the distribution.
The parameter nu
determines the skewness of the distribution with nu>0
indicating positive skewness and
nu<0
negative. The parameter tau
determines the kurtosis of the distribution. tau
should be positive and most likely in the region
from zero to 1. As tau
goes to 0 (and for nu=0
) the distribution approaches the the Normal density function.
The distribution is appropriate for leptokurtic data that is data with kurtosis larger that the Normal distribution one.
JSU()
returns a gamlss.family
object which can be used to fit a Johnson's Su distribution in the gamlss()
function.
dJSU()
gives the density, pJSU()
gives the distribution
function, qJSU()
gives the quantile function, and rJSU()
generates random deviates.
The function JSU
uses first derivatives square in the fitting procedure so
standard errors should be interpreted with caution
Bob Rigby and Mikis Stasinopoulos
Johnson, N. L. (1954). Systems of frequency curves derived from the first law of Laplace., Trabajos de Estadistica, 5, 283-291.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
JSU() plot(function(x)dJSU(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 4, main = "The JSU density mu=0,sigma=1,nu=-1, tau=.5") plot(function(x) pJSU(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 4, main = "The JSU cdf mu=0, sigma=1, nu=-1, tau=.5") # library(gamlss) # data(abdom) # h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=JSU, data=abdom)
JSU() plot(function(x)dJSU(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 4, main = "The JSU density mu=0,sigma=1,nu=-1, tau=.5") plot(function(x) pJSU(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 4, main = "The JSU cdf mu=0, sigma=1, nu=-1, tau=.5") # library(gamlss) # data(abdom) # h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=JSU, data=abdom)
This function defines the , a four parameter distribution, for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
. The functions dJSUo
,
pJSUo
, qJSUo
and rJSUo
define the density, distribution function, quantile function and random
generation for the the Johnson's Su distribution.
JSUo(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dJSUo(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pJSUo(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qJSUo(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rJSUo(n, mu = 0, sigma = 1, nu = 0, tau = 1)
JSUo(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dJSUo(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pJSUo(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qJSUo(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rJSUo(n, mu = 0, sigma = 1, nu = 0, tau = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the orininal Jonhson's SU distribution, (JSUo
), is defined as
for ,
,
,
and
.
where
,
, see pp. 389-390 of Rigby et al. (2019).
JSUo()
returns a gamlss.family
object which can be used to fit a Johnson's Su distribution in the gamlss()
function.
dJSUo()
gives the density, pJSUo()
gives the distribution
function, qJSUo()
gives the quantile function, and rJSUo()
generates random deviates.
The function JSU
uses first derivatives square in the fitting procedure so
standard errors should be interpreted with caution. It is recomented to be used only with method=mixed(2,20)
Mikis Stasinopoulos and Bob Rigby
Johnson, N. L. (1954). Systems of frequency curves derived from the first law of Laplace., Trabajos de Estadistica, 5, 283-291.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
JSU() plot(function(x)dJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15, main = "The JSUo density mu=0,sigma=1,nu=-1, tau=.5") plot(function(x) pJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15, main = "The JSUo cdf mu=0, sigma=1, nu=-1, tau=.5") # library(gamlss) # data(abdom) # h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=JSUo, # data=abdom, method=mixed(2,20)) # plot(h)
JSU() plot(function(x)dJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15, main = "The JSUo density mu=0,sigma=1,nu=-1, tau=.5") plot(function(x) pJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15, main = "The JSUo cdf mu=0, sigma=1, nu=-1, tau=.5") # library(gamlss) # data(abdom) # h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=JSUo, # data=abdom, method=mixed(2,20)) # plot(h)
The function LG
defines the logarithmic distribution, a one parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dLG
, pLG
, qLG
and rLG
define the
density, distribution function, quantile function
and random generation for the logarithmic , LG()
, distribution.
The function ZALG
defines the zero adjusted logarithmic distribution, a two parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dZALG
, pZALG
, qZALG
and rZALG
define the
density, distribution function, quantile function
and random generation for the inflated logarithmic , ZALG()
, distribution.
LG(mu.link = "logit") dLG(x, mu = 0.5, log = FALSE) pLG(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE) qLG(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rLG(n, mu = 0.5) ZALG(mu.link = "logit", sigma.link = "logit") dZALG(x, mu = 0.5, sigma = 0.1, log = FALSE) pZALG(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZALG(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZALG(n, mu = 0.5, sigma = 0.1)
LG(mu.link = "logit") dLG(x, mu = 0.5, log = FALSE) pLG(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE) qLG(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rLG(n, mu = 0.5) ZALG(mu.link = "logit", sigma.link = "logit") dZALG(x, mu = 0.5, sigma = 0.1, log = FALSE) pZALG(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZALG(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZALG(n, mu = 0.5, sigma = 0.1)
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
valued needed for the numerical calculation of the q-function |
The parameterization of the logarithmic distribution in the function LG
is
where
for with
and
with
see pp 474-475 of Rigby et al. (2019).
For the zero adjusted logarithmic distribution ZALG
which is defined
for
see pp 492-494 of Rigby et al. (2019).
The function LG
and ZALG
return a gamlss.family
object which can be used to fit a
logarithmic and a zero inflated logarithmic distributions respectively in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Johnson, Norman Lloyd; Kemp, Adrienne W; Kotz, Samuel (2005). "Chapter 7: Logarithmic and Lagrangian distributions". Univariate discrete distributions (3 ed.). John Wiley & Sons. ISBN 9780471272465.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see https://www.gamlss.com/)
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
LG() ZAP() # creating data and plotting them dat <- rLG(1000, mu=.3) r <- barplot(table(dat), col='lightblue') dat1 <- rZALG(1000, mu=.3, sigma=.1) r1 <- barplot(table(dat1), col='lightblue')
LG() ZAP() # creating data and plotting them dat <- rLG(1000, mu=.3) r <- barplot(table(dat), col='lightblue') dat1 <- rZALG(1000, mu=.3, sigma=.1) r1 <- barplot(table(dat1), col='lightblue')
The functions LOGNO
and LOGNO2
define a gamlss.family
distribution to fits the log-Normal distribution.
The difference between them is that while LOGNO
retains the original parametrization for mu
, (identical to the normal distribution NO
) and therefore , the function
LOGNO2
use mu
as the median, so .
The function LNO
is more general and can fit a Box-Cox transformation
to data using the gamlss()
function.
In the LOGNO
(and LOGNO2
) there are two parameters involved mu
sigma
, while in the
LNO
there are three parameters mu
sigma
,
and the transformation parameter nu
.
The transformation parameter nu
in LNO
is a 'fixed' parameter (not estimated) and it has its default value equal to
zero allowing the fitting of the log-normal distribution as in LOGNO
.
See the example below on how to fix nu
to be a particular value.
In order to estimate (or model) the parameter nu
, use the gamlss.family
BCCG
distribution which uses a reparameterized version of the the Box-Cox transformation.
The functions dLOGNO
, pLOGNO
, qLOGNO
and rLOGNO
define the density, distribution function, quantile function and random
generation for the specific parameterization of the log-normal distribution.
The functions dLOGNO2
, pLOGNO2
, qLOGNO2
and rLOGNO2
define the density, distribution function, quantile function and random
generation when mu
is the median of the log-normal distribution.
The functions dLNO
, pLNO
, qLNO
and rLNO
define the density, distribution function, quantile function and random
generation for the specific parameterization of the log-normal distribution and more generally a Box-Cox transformation.
LNO(mu.link = "identity", sigma.link = "log") LOGNO(mu.link = "identity", sigma.link = "log") LOGNO2(mu.link = "log", sigma.link = "log") dLNO(x, mu = 1, sigma = 0.1, nu = 0, log = FALSE) dLOGNO(x, mu = 0, sigma = 1, log = FALSE) dLOGNO2(x, mu = 1, sigma = 1, log = FALSE) pLNO(q, mu = 1, sigma = 0.1, nu = 0, lower.tail = TRUE, log.p = FALSE) pLOGNO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) pLOGNO2(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLNO(p, mu = 1, sigma = 0.1, nu = 0, lower.tail = TRUE, log.p = FALSE) qLOGNO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLOGNO2(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLNO(n, mu = 1, sigma = 0.1, nu = 0) rLOGNO(n, mu = 0, sigma = 1) rLOGNO2(n, mu = 1, sigma = 1)
LNO(mu.link = "identity", sigma.link = "log") LOGNO(mu.link = "identity", sigma.link = "log") LOGNO2(mu.link = "log", sigma.link = "log") dLNO(x, mu = 1, sigma = 0.1, nu = 0, log = FALSE) dLOGNO(x, mu = 0, sigma = 1, log = FALSE) dLOGNO2(x, mu = 1, sigma = 1, log = FALSE) pLNO(q, mu = 1, sigma = 0.1, nu = 0, lower.tail = TRUE, log.p = FALSE) pLOGNO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) pLOGNO2(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLNO(p, mu = 1, sigma = 0.1, nu = 0, lower.tail = TRUE, log.p = FALSE) qLOGNO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLOGNO2(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLNO(n, mu = 1, sigma = 0.1, nu = 0) rLOGNO(n, mu = 0, sigma = 1) rLOGNO2(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of shape parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function in LOGNO
is defined as
for ,
and
see pp. 428-429 of Rigby et al. (2019).
The probability density function in LOGNO2
is defined as
for ,
and
see pp. 429-430 of Rigby et al. (2019).
The probability density function in LNO
is defined as
where if
else
and
,
for
,
,
and
. This is not a proper distribution see for example p. 447 of Rigby et al. (2019).
LNO()
returns a gamlss.family
object which can be used to fit a log-normal distribution in the gamlss()
function.
dLNO()
gives the density, pLNO()
gives the distribution
function, qLNO()
gives the quantile function, and rLNO()
generates random deviates.
This is a two parameter fit for and
while
is fixed.
If you wish to model
use the gamlss family
BCCG
.
is the mean of z (and also the median of y), the Box-Cox transformed variable and
is the standard deviation of z
and approximate the coefficient of variation of y
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with discussion), J. R. Statist. Soc. B., 26, 211–252
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547.An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
LOGNO()# gives information about the default links for the log normal distribution LOGNO2() LNO()# gives information about the default links for the Box Cox distribution # plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dLOGNO(x, mu=0), 0, 10) curve(pLOGNO(x, mu=0), 0, 10) curve(qLOGNO(x, mu=0), 0, 1) Y<- rLOGNO(200) hist(Y) par(op) # plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dLOGNO2(x, mu=1), 0, 10) curve(pLOGNO2(x, mu=1), 0, 10) curve(qLOGNO2(x, mu=1), 0, 1) Y<- rLOGNO(200) hist(Y) par(op) # library(gamlss) # data(abdom) # h1<-gamlss(y~cs(x), family=LOGNO, data=abdom)#fits the log-Normal distribution # h2<-gamlss(y~cs(x), family=LNO, data=abdom) #should be identical to the one above # to change to square root transformation, i.e. fix nu=0.5 # h3<-gamlss(y~cs(x), family=LNO, data=abdom, nu.fix=TRUE, nu.start=0.5)
LOGNO()# gives information about the default links for the log normal distribution LOGNO2() LNO()# gives information about the default links for the Box Cox distribution # plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dLOGNO(x, mu=0), 0, 10) curve(pLOGNO(x, mu=0), 0, 10) curve(qLOGNO(x, mu=0), 0, 1) Y<- rLOGNO(200) hist(Y) par(op) # plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dLOGNO2(x, mu=1), 0, 10) curve(pLOGNO2(x, mu=1), 0, 10) curve(qLOGNO2(x, mu=1), 0, 1) Y<- rLOGNO(200) hist(Y) par(op) # library(gamlss) # data(abdom) # h1<-gamlss(y~cs(x), family=LOGNO, data=abdom)#fits the log-Normal distribution # h2<-gamlss(y~cs(x), family=LNO, data=abdom) #should be identical to the one above # to change to square root transformation, i.e. fix nu=0.5 # h3<-gamlss(y~cs(x), family=LNO, data=abdom, nu.fix=TRUE, nu.start=0.5)
The function LO()
, or equivalently Logistic()
, defines the logistic distribution, a two parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
LO(mu.link = "identity", sigma.link = "log") dLO(x, mu = 0, sigma = 1, log = FALSE) pLO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLO(n, mu = 0, sigma = 1)
LO(mu.link = "identity", sigma.link = "log") dLO(x, mu = 0, sigma = 1, log = FALSE) pLO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLO(n, mu = 0, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Definition file for Logistic distribution.
for ,
and
, see page 368 of Rigby et al. (2019).
LO()
returns a gamlss.family
object which can be used to fit a logistic distribution in the gamlss()
function.
dLO()
gives the density, pLO()
gives the distribution
function, qLO()
gives the quantile function, and rLO()
generates random deviates for the logistic distribution.
The latest functions are based on the equivalent R
functions for logistic distribution.
is the mean and
is the standard deviation for the logistic distribution
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
LO()# gives information about the default links for the Logistic distribution plot(function(y) dLO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pLO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qLO(y, mu=10 ,sigma=2), 0, 1) # library(gamlss) # data(abdom) # h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=LO, data=abdom) # fits # plot(h)
LO()# gives information about the default links for the Logistic distribution plot(function(y) dLO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pLO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qLO(y, mu=10 ,sigma=2), 0, 1) # library(gamlss) # data(abdom) # h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=LO, data=abdom) # fits # plot(h)
The functions dLOGITNO
, pLOGITNO
, qLOGITNO
and rLOGITNO
define the density, distribution function, quantile function and random
generation for the logit-normal distribution.
The function LOGITNO
can be used for fitting the distribution in gamlss()
.
LOGITNO(mu.link = "logit", sigma.link = "log") dLOGITNO(x, mu = 0.5, sigma = 1, log = FALSE) pLOGITNO(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLOGITNO(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLOGITNO(n, mu = 0.5, sigma = 1)
LOGITNO(mu.link = "logit", sigma.link = "log") dLOGITNO(x, mu = 0.5, sigma = 1, log = FALSE) pLOGITNO(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLOGITNO(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLOGITNO(n, mu = 0.5, sigma = 1)
mu.link |
the link function for mu |
sigma.link |
the link function for sigma |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function in LOGITNO
is defined as
for ,
and
see p 463 of Rigby et al. (2019).
LOGITNO()
returns a gamlss.family
object which can be used to fit a logit-normal distribution in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
# plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dLOGITNO(x), 0, 1) curve(pLOGITNO(x), 0, 1) curve(qLOGITNO(x), 0, 1) Y<- rLOGITNO(200) hist(Y) par(op) # plotting the d, p, q, and r functions # sigma 3 op<-par(mfrow=c(2,2)) curve(dLOGITNO(x, sigma=3), 0, 1) curve(pLOGITNO(x, sigma=3), 0, 1) curve(qLOGITNO(x, sigma=3), 0, 1) Y<- rLOGITNO(200, sigma=3) hist(Y) par(op)
# plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dLOGITNO(x), 0, 1) curve(pLOGITNO(x), 0, 1) curve(qLOGITNO(x), 0, 1) Y<- rLOGITNO(200) hist(Y) par(op) # plotting the d, p, q, and r functions # sigma 3 op<-par(mfrow=c(2,2)) curve(dLOGITNO(x, sigma=3), 0, 1) curve(pLOGITNO(x, sigma=3), 0, 1) curve(qLOGITNO(x, sigma=3), 0, 1) Y<- rLOGITNO(200, sigma=3) hist(Y) par(op)
The function LQNO()
defines a normal distribution family, which has a specific mean and variance relationship. The distribution can be used in a GAMLSS fitting using the function gamlss(). The mean of LQNO is equal to mu
. The variance is equal to mu*(1+sigma*mu)
so the standard deviation is sqrt(mu*(1+sigma*mu))
. The function is found useful in modelling small RNA sequencing experiments see Argyropoulos et al. (2017. The functions dLQNO
, pLQNO
, qLQNO
and rLQNO
define the density, distribution function, quantile function (inverse cdf) and random generation for the LQNO()
parametrization of the normal distribution.
LQNO(mu.link = "log", sigma.link = "log") dLQNO(x, mu = 1, sigma = 1, log = FALSE) pLQNO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLQNO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLQNO(n, mu = 1, sigma = 1)
LQNO(mu.link = "log", sigma.link = "log") dLQNO(x, mu = 1, sigma = 1, log = FALSE) pLQNO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLQNO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLQNO(n, mu = 1, sigma = 1)
mu.link |
|
sigma.link |
|
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if |
lower.tail |
if |
p |
vector of probabilities |
n |
number of observations. If |
LQNO
stands for Linear Quadratic Normal Family, in which the variance is a linear quadratic function of the mean: Var(Y) = mu*(1+sigma*mu)
. This is created to facilitate the analysis of data coming from small RNA sequencing experiments, basically counts of short RNAs that one isolates from cells or biofluids such as urine, plasma or cerebrospinal fluid. Argyropoulos et al. (2017) showing that the LQNO
distribution (and the Negative Binomial which implements the same mean- variance relationship) are highly accurate approximations to the generative models of the signals in these experiments
The function LQNO
returns a gamlss.family
object which can be used to fit this specific form of the normal distribution family in the gamlss() function.
The mu
parameters must be positive so for the relationship Var(Y) = mu*(1+sigma*mu)
to be valid.
Christos Argyropoulos
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Argyropoulos C, Etheridge A, Sakhanenko N, Galas D. (2017) Modeling bias and variation in the stochastic processes of small RNA sequencing. Nucleic Acids Res. 2017 Mar 27. doi: 10.1093/nar/gkx199. [Epub ahead of print] PubMed PMID: 28369495.
LQNO()# gives information about the default links for the normal distribution # a comparison of different Normal models #m1 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=NO(mu.link="log")) #m2 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=LQNO) #m3 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=NOF(mu.link="log")) #AIC(m1,m2,m3)
LQNO()# gives information about the default links for the normal distribution # a comparison of different Normal models #m1 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=NO(mu.link="log")) #m2 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=LQNO) #m3 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=NOF(mu.link="log")) #AIC(m1,m2,m3)
The function make.link.gamlss()
is used with gamlss.family
distributions in package gamlss().
Given a link, it returns a link function, an inverse link function, the derivative dpar/deta where 'par' is
the appropriate
distribution parameter and a function for checking the domain. It differs from the usual make.link
of glm()
by having extra links as the logshifto1
, and the
own
. For the use of the own
link see the example bellow.
show.link
provides a way in which the user can identify the link functions available for each gamlss distribution.
If your required link function is not available for any of the gamlss distributions you can add it in.
make.link.gamlss(link) show.link(family = "NO")
make.link.gamlss(link) show.link(family = "NO")
link |
character or numeric; one of |
family |
a gamlss distribution |
The own
link function is added to allow the user greater flexibility.
In order to used the own link function for any of the parameters of the distribution the own
link should
appear in the available links for this parameter. You can check this using the function show.link
.
If the own
do not appear in the list you can create a new function for the distribution in which
own
is added in the list. For example the first line of the code of the binomial distribution,
BI
, has change
from
"mstats <- checklink("mu.link", "Binomial", substitute(mu.link), c("logit", "probit", "cloglog", "log")), in version 1.0-0 of gamlss, to
"mstats <- checklink("mu.link", "Binomial", substitute(mu.link), c("logit", "probit", "cloglog", "log", "own"))
in version 1.0-1. Given that the parameter has own
as an option the user needs also to define the following
four new functions in order to used an own
link.
i) own.linkfun
ii) own.linkinv
iii) own.mu.eta and
iv) own.valideta.
An example is given below.
Only one parameter of the distribution at a time is allowed to have its own
link,
(unless the same four own
functions above are suitable for more that one parameter of the distribution).
Note that from gamlss version 1.9-0 the user can introduce its own link function by define an appropriate function, (see the example below).
For the make.link.gamlss
a list with components
linkfun: Link function function(parameter)
linkinv: Inverse link function function(eta)
mu.eta: Derivative function(eta)
dparameter/deta
valideta: function(eta)
TRUE if all of eta is in the domain of linkinv
.
For the show.link
a list with components the available links for the distribution parameters
For the links involving parameters as in logshifted
and logitshifted
the parameters
can be passed in the definition of the distribution by calling the checklink
function, for example in the definition of
the tau
parameter in BCPE distribution the following call is made:
tstats <- checklink( "tau.link", "Box Cox Power Exponential", substitute(tau.link),
c("logshifted", "log", "identity"), par.link = c(1))
Mikis Stasinopoulos and Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
str(make.link.gamlss("logshiftto1")) l2<-make.link.gamlss("logshiftto1") l2$linkfun(2) # should close to zero (Note that 0.00001 is added) l2$linkfun(1-0.00001) # should be -Inf but it is large negative #--------------------------------------------------------- # now use the own link function # first if the distribution allows you show.link(BI) # seems OK now define the four own functions # First try the probit link using the own link function # 1: the linkfun function own.linkfun <- function(mu) { qNO(p=mu)} # 2: the inverse link function own.linkinv <- function(eta) { thresh <- -qNO(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) pNO(eta)} # 3: the dmu/deta function own.mu.eta <- function(eta) pmax(dNO(eta), .Machine$double.eps) # 4: the valideta function own.valideta <- function(eta) TRUE ## bring the data # library(gamlss) #data(aep) # fitting the model using "own" # h1<-gamlss(y~ward+loglos+year, family=BI(mu.link="own"), data=aep) # model h1 should be identical to the probit # h2<-gamlss(y~ward+loglos+year, family=BI(mu.link="probit"), data=aep) # now using a function instead of "own" probittest <- function() { linkfun <- function(mu) { qNO(p=mu)} linkinv <- function(eta) { thresh <- -qNO(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) pNO(eta) } mu.eta <- function(eta) pmax(dNO(eta), .Machine$double.eps) valideta <- function(eta) TRUE link <- "probitTest" structure(list(linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta, valideta = valideta, name = link), class = "link-gamlss") } # h3<-gamlss(y~ward+loglos+year, family=BI(mu.link=probittest()), data=aep) # Second try the complementary log-log # using the Gumbel distribution own.linkfun <- function(mu) { qGU(p=mu)} own.linkinv <- function(eta) { thresh <- -qGU(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) pGU(eta)} own.mu.eta <- function(eta) pmax(dGU(eta), .Machine$double.eps) own.valideta <- function(eta) TRUE # h1 and h2 should be identical to cloglog # h1<-gamlss(y~ward+loglos+year, family=BI(mu.link="own"), data=aep) # h2<-gamlss(y~ward+loglos+year, family=BI(mu.link="cloglog"), data=aep) # note that the Gumbel distribution is negatively skew # for a positively skew link function we can used the Reverse Gumbel revloglog <- function() { linkfun <- function(mu) { qRG(p=mu)} linkinv <- function(eta) { thresh <- -qRG(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) pRG(eta)} mu.eta <- function(eta) pmax(dRG(eta), .Machine$double.eps) valideta <- function(eta) TRUE link <- "revloglog" structure(list(linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta, valideta = valideta, name = link), class = "link-gamlss") } # h1<-gamlss(y~ward+loglos+year, family=BI(mu.link=revloglog()), data=aep) # a considerable improvement in the deviance # try a shifted logit link function from -1, 1 own.linkfun <- function(mu) { shift = c(-1,1) log((mu-shift[1])/(shift[2]-mu)) } own.linkinv <- function(eta) { shift = c(-1,1) thresh <- -log(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) shift[2]-(shift[2]-shift[1])/(1 + exp(eta)) } own.mu.eta <- function(eta) { shift = c(-1,1) thresh <- -log(.Machine$double.eps) res <- rep(.Machine$double.eps, length(eta)) res[abs(eta) < thresh] <- ((shift[2]-shift[1])*exp(eta)/(1 + exp(eta))^2)[abs(eta) < thresh] res } own.valideta <- function(eta) TRUE #---------- str(make.link.gamlss("own")) l2<-make.link.gamlss("own") l2$linkfun(0) # should be zero l2$linkfun(1) # should be Inf l2$linkinv(-5:5)
str(make.link.gamlss("logshiftto1")) l2<-make.link.gamlss("logshiftto1") l2$linkfun(2) # should close to zero (Note that 0.00001 is added) l2$linkfun(1-0.00001) # should be -Inf but it is large negative #--------------------------------------------------------- # now use the own link function # first if the distribution allows you show.link(BI) # seems OK now define the four own functions # First try the probit link using the own link function # 1: the linkfun function own.linkfun <- function(mu) { qNO(p=mu)} # 2: the inverse link function own.linkinv <- function(eta) { thresh <- -qNO(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) pNO(eta)} # 3: the dmu/deta function own.mu.eta <- function(eta) pmax(dNO(eta), .Machine$double.eps) # 4: the valideta function own.valideta <- function(eta) TRUE ## bring the data # library(gamlss) #data(aep) # fitting the model using "own" # h1<-gamlss(y~ward+loglos+year, family=BI(mu.link="own"), data=aep) # model h1 should be identical to the probit # h2<-gamlss(y~ward+loglos+year, family=BI(mu.link="probit"), data=aep) # now using a function instead of "own" probittest <- function() { linkfun <- function(mu) { qNO(p=mu)} linkinv <- function(eta) { thresh <- -qNO(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) pNO(eta) } mu.eta <- function(eta) pmax(dNO(eta), .Machine$double.eps) valideta <- function(eta) TRUE link <- "probitTest" structure(list(linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta, valideta = valideta, name = link), class = "link-gamlss") } # h3<-gamlss(y~ward+loglos+year, family=BI(mu.link=probittest()), data=aep) # Second try the complementary log-log # using the Gumbel distribution own.linkfun <- function(mu) { qGU(p=mu)} own.linkinv <- function(eta) { thresh <- -qGU(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) pGU(eta)} own.mu.eta <- function(eta) pmax(dGU(eta), .Machine$double.eps) own.valideta <- function(eta) TRUE # h1 and h2 should be identical to cloglog # h1<-gamlss(y~ward+loglos+year, family=BI(mu.link="own"), data=aep) # h2<-gamlss(y~ward+loglos+year, family=BI(mu.link="cloglog"), data=aep) # note that the Gumbel distribution is negatively skew # for a positively skew link function we can used the Reverse Gumbel revloglog <- function() { linkfun <- function(mu) { qRG(p=mu)} linkinv <- function(eta) { thresh <- -qRG(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) pRG(eta)} mu.eta <- function(eta) pmax(dRG(eta), .Machine$double.eps) valideta <- function(eta) TRUE link <- "revloglog" structure(list(linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta, valideta = valideta, name = link), class = "link-gamlss") } # h1<-gamlss(y~ward+loglos+year, family=BI(mu.link=revloglog()), data=aep) # a considerable improvement in the deviance # try a shifted logit link function from -1, 1 own.linkfun <- function(mu) { shift = c(-1,1) log((mu-shift[1])/(shift[2]-mu)) } own.linkinv <- function(eta) { shift = c(-1,1) thresh <- -log(.Machine$double.eps) eta <- pmin(thresh, pmax(eta, -thresh)) shift[2]-(shift[2]-shift[1])/(1 + exp(eta)) } own.mu.eta <- function(eta) { shift = c(-1,1) thresh <- -log(.Machine$double.eps) res <- rep(.Machine$double.eps, length(eta)) res[abs(eta) < thresh] <- ((shift[2]-shift[1])*exp(eta)/(1 + exp(eta))^2)[abs(eta) < thresh] res } own.valideta <- function(eta) TRUE #---------- str(make.link.gamlss("own")) l2<-make.link.gamlss("own") l2$linkfun(0) # should be zero l2$linkfun(1) # should be Inf l2$linkinv(-5:5)
The set of function presented here is useful for fitting multinomial regression within gamlss.
MN3(mu.link = "log", sigma.link = "log") MN4(mu.link = "log", sigma.link = "log", nu.link = "log") MN5(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log") MULTIN(type = "3") fittedMN(model) dMN3(x, mu = 1, sigma = 1, log = FALSE) dMN4(x, mu = 1, sigma = 1, nu = 1, log = FALSE) dMN5(x, mu = 1, sigma = 1, nu = 1, tau = 1, log = FALSE) pMN3(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) pMN4(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) pMN5(q, mu = 1, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) qMN3(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qMN4(p, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) qMN5(p, mu = 1, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) rMN3(n, mu = 1, sigma = 1) rMN4(n, mu = 1, sigma = 1, nu = 1) rMN5(n, mu = 1, sigma = 1, nu = 1, tau = 1)
MN3(mu.link = "log", sigma.link = "log") MN4(mu.link = "log", sigma.link = "log", nu.link = "log") MN5(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log") MULTIN(type = "3") fittedMN(model) dMN3(x, mu = 1, sigma = 1, log = FALSE) dMN4(x, mu = 1, sigma = 1, nu = 1, log = FALSE) dMN5(x, mu = 1, sigma = 1, nu = 1, tau = 1, log = FALSE) pMN3(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) pMN4(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) pMN5(q, mu = 1, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) qMN3(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qMN4(p, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE) qMN5(p, mu = 1, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) rMN3(n, mu = 1, sigma = 1) rMN4(n, mu = 1, sigma = 1, nu = 1) rMN5(n, mu = 1, sigma = 1, nu = 1, tau = 1)
mu.link |
the link function for mu |
sigma.link |
the link function for sigma |
nu.link |
the link function for nu |
tau.link |
the link function for tau |
x |
the x variable |
q |
vector of quantiles |
p |
vector of probabilities |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x]. |
log.p |
logical; if TRUE, probabilities p are given as log(p). |
log |
logical; if TRUE, probabilities p are given as log(p). |
n |
the number of observations |
mu |
the mu parameter |
sigma |
the sigma parameter |
nu |
the nu parameter |
tau |
the tau parameter |
type |
permitted values are 2 (Binomial), 3, 4, and 5 |
model |
a gamlss multinomial fitted model |
GAMLSS is in general not suitable for multinomial regression. Nevertheless multinomial regression can be fitted within GAMLSS if the response variable y has less than five categories. The function here provide the facilities to do so. The functions MN3()
, MN4()
and MN5()
fit multinomial responses with 3, 4 and 5 categories respectively.
The function MULTIN()
can be used instead of MN3()
, MN4()
and MN5()
by specifying the number of levels of the response. Note that MULTIN(2)
will produce a binomial fit.
returns a gamlss.family
object which can be used to fit a binomial distribution in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby and Vlasios Voudouris
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
dMN3(3) pMN3(2) qMN3(.6) rMN3(10)
dMN3(3) pMN3(2) qMN3(.6) rMN3(10)
The functions momentSK()
, centileSK()
, centileSkew()
and centileKurt()
, calculate sample statistics related to skewness and kurtosis. The function theoCentileSK()
calculates the theoretical centile statistics from a given gamlss.family
distribution. The plotCentileSK()
plots the theoretical centile skewness and kurtosis against p
(see below).
The function checkMomentSK()
can be use to check (a) whether the moment skewness and kurtosis of a fitted model are modelled adequantly (the residuals of the model are used). (b) whether a given sample display skewness or kurtosis.
momentSK(x, weights=NULL) centileSK(x, cent = c(1, 25), weights=NULL) centileSkew(x, cent = 1, weights=NULL) centileKurt(x, cent = 1, weights=NULL) theoCentileSK(fam = "NO", p = 0.01, ...) plotCentileSK(fam = "NO", plotting = c("skew", "kurt", "standKurt"), add = FALSE, col = 1, lty = 1, lwd = 1, ylim = NULL, ...) checkMomentSK(x, weights=NULL, add = FALSE, bootstrap = TRUE, no.bootstrap = 99, col.bootstrap = "lightblue", pch.bootstrap = 21, asCharacter = TRUE, col.point = "black", pch.point = 4, lwd.point = 2, text.to.show = NULL, cex.text = 1.5, col.text = "black", show.legend = TRUE) checkCentileSK(x,weights=NULL, type = c("central", "tail"), add = FALSE, bootstrap = TRUE, no.bootstrap = 99, col.bootstrap = "lightblue", pch.bootstrap = 21, asCharacter = TRUE, col.point = "black", pch.point = 4, lwd.point = 2, text.to.show = NULL, cex.text = 1.5, col.text = "black", show.legend = TRUE)
momentSK(x, weights=NULL) centileSK(x, cent = c(1, 25), weights=NULL) centileSkew(x, cent = 1, weights=NULL) centileKurt(x, cent = 1, weights=NULL) theoCentileSK(fam = "NO", p = 0.01, ...) plotCentileSK(fam = "NO", plotting = c("skew", "kurt", "standKurt"), add = FALSE, col = 1, lty = 1, lwd = 1, ylim = NULL, ...) checkMomentSK(x, weights=NULL, add = FALSE, bootstrap = TRUE, no.bootstrap = 99, col.bootstrap = "lightblue", pch.bootstrap = 21, asCharacter = TRUE, col.point = "black", pch.point = 4, lwd.point = 2, text.to.show = NULL, cex.text = 1.5, col.text = "black", show.legend = TRUE) checkCentileSK(x,weights=NULL, type = c("central", "tail"), add = FALSE, bootstrap = TRUE, no.bootstrap = 99, col.bootstrap = "lightblue", pch.bootstrap = 21, asCharacter = TRUE, col.point = "black", pch.point = 4, lwd.point = 2, text.to.show = NULL, cex.text = 1.5, col.text = "black", show.legend = TRUE)
x |
data vector or gamlss model |
weights |
prior weights for the x |
cent |
the centile required |
type |
For centile skewness and kurtosis only whether "central" (default) or "tail") |
fam |
A gamlss distribution family |
plotting |
what to plot |
add |
whether to add the line to the existing plot |
col |
the colour of the line |
lty |
the type of the line |
lwd |
the width of the line |
ylim |
the y limit of the graph |
p |
the value determiming the centile skewness or kurtosis |
... |
additional arguments pass to |
bootstrap |
whether a plot of the bootstrap skewness and kurtosis measures should be added in the plot |
no.bootstrap |
the number of boostrap skewness and kurtosis measures |
col.bootstrap |
the coloue for boostraps |
pch.bootstrap |
the point type of boostraps |
asCharacter |
whether to plot the estimated skewness and kurtosis measure as character or as point |
col.point |
the colour of the skewness and kurtosis measure |
pch.point |
the point type of the skewness and kurtosis measure |
lwd.point |
the width of the plotted point |
text.to.show |
to display text different from variable or model |
cex.text |
the size of the text |
col.text |
the colour of the text |
show.legend |
whether to show the legent |
Those function calculate sample moment and centile skewness and kurtosis statistics and theoretical centile values for a specific distribution.
Different functions produce different output:
The function momentSK()
produce:
mom.skew: |
sample moment skewness |
trans.mom.skew: |
sample transformed moment skewness |
mom.kurt: |
sample moment kurtosis |
excess.mom.kurt: |
sample excess moment kurtosis |
trans.mom.kurt: |
sample ransformed moment excess kurtosis |
jarque.bera.test: |
the value of the Jarque-bera test for testing whether skewness and excess kurtosis are zero or not |
The function centileSK()
produces:
S0.25: |
sample centile central skewness |
S0.01: |
sample centile tail skewness |
K0.01: |
sample centile kurtosis |
standK0.01: |
standardised centile kurtosis, ( |
exc.K0.01: |
excess centile kurtosis, ( |
trans.K0.01: |
transfored excess centile kurtosis, (exc.K0.01/(1+abs(exc.K0.01)) |
The function centileSkew()
for a given argument p
produces:
p: |
the value determiming the centile skewness |
Sp: |
sample centile skewness at |
The function centileKurt()
for a given argument p
produces:
p |
the value determiming the centile kurtosis |
Kp |
sample centile kurtosis at |
sKp |
sample standardised centile kurtosis at |
ex.Kp: |
sample excess centile kurtosis at |
teKp: |
sample transformed excess centile kurtosis at |
The function theoCentileSK
for a given gamlss.family
produces:
IR |
the interquartile range of the distribution |
SIR |
the semi interquartile range of the distribution |
S_0.25 |
the central skewness of the distribution |
S_0.01: |
the tail skewness of the distribution |
K_0.01: |
the centile kurtosis of the distribution |
sK_0.01: |
the standardised centile kurtosis of the distribution |
Mikis Stasinopoulos, Bobert Rigby, Gillain Heller and Fernanda De Bastiani.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
Y <- rSEP3(1000) momentSK(Y) centileSK(Y) centileSkew(Y, cent=20) centileKurt(Y, cent=30) theoCentileSK("BCCG", mu=2, sigma=.2, nu=2) plotCentileSK(fam="BCCG", mu=2, sigma=.2, nu=2) checkMomentSK(Y) checkCentileSK(Y) checkCentileSK(Y, type="tail")
Y <- rSEP3(1000) momentSK(Y) centileSK(Y) centileSkew(Y, cent=20) centileKurt(Y, cent=30) theoCentileSK("BCCG", mu=2, sigma=.2, nu=2) plotCentileSK(fam="BCCG", mu=2, sigma=.2, nu=2) checkMomentSK(Y) checkCentileSK(Y) checkCentileSK(Y, type="tail")
The NBF()
function defines the Negative Binomial family distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dNBF
, pNBF
, qNBF
and rNBF
define the density, distribution function, quantile function and random generation for the negative binomial family, NBF()
, distribution.
The functions dZINBF
, pZINBF
, qZINBF
and rZINBF
define the density, distribution function, quantile function and random generation for the zero inflated negative binomial family, ZINBF()
, distribution a four parameter distribution.
NBF(mu.link = "log", sigma.link = "log", nu.link = "log") dNBF(x, mu = 1, sigma = 1, nu = 2, log = FALSE) pNBF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qNBF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rNBF(n, mu = 1, sigma = 1, nu = 2) ZINBF(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit") dZINBF(x, mu = 1, sigma = 1, nu = 2, tau = 0.1, log = FALSE) pZINBF(q, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZINBF(p, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE) rZINBF(n, mu = 1, sigma = 1, nu = 2, tau = 0.1)
NBF(mu.link = "log", sigma.link = "log", nu.link = "log") dNBF(x, mu = 1, sigma = 1, nu = 2, log = FALSE) pNBF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qNBF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rNBF(n, mu = 1, sigma = 1, nu = 2) ZINBF(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "logit") dZINBF(x, mu = 1, sigma = 1, nu = 2, tau = 0.1, log = FALSE) pZINBF(q, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZINBF(p, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE) rZINBF(n, mu = 1, sigma = 1, nu = 2, tau = 0.1)
mu.link |
The link function for |
sigma.link |
The link function for |
nu.link |
The link function for |
tau.link |
The link function for |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of positive dispersion parameter |
nu |
vector of power parameter |
tau |
vector of inflation parameter |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
The definition for Negative Binomial Family distribution , NBF
, is similar to the Negative Binomial type I. The probability function of the NBF
can be obtained by replacing with
where
is a power parameter.
The distribution has mean
and variance
For more details see pp 507-508 of Rigby et al. (2019).
The zero inflated negative binomial family ZINBF
is defined as an inflated at zero NBF
.
returns a gamlss.family
object which can be used to fit a Negative Binomial Family distribution in the gamlss()
function.
Bob Rigby and Mikis Stasinopoulos
Anscombe, F. J. (1950) Sampling theory of the negative binomial and logarithmic distributions, Biometrika, 37, 358-382.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
NBF() # default link functions for the Negative Binomial Family # plotting the distribution plot(function(y) dNBF(y, mu = 10, sigma = 0.5, nu=2 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rNBF(1000, mu=5, sigma=0.5, nu=2)) r <- barplot(tN, col='lightblue') # zero inflated NBF ZINBF() # default link functions for the zero inflated NBF # plotting the distribution plot(function(y) dZINBF(y, mu = 10, sigma = 0.5, nu=2, tau=.1 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rZINBF(1000, mu=5, sigma=0.5, nu=2, tau=0.1)) r <- barplot(tN, col='lightblue') ## Not run: library(gamlss) data(species) species <- transform(species, x=log(lake)) m6 <- gamlss(fish~poly(x,2), sigma.fo=~1, data=species, family=NBF, n.cyc=200) fitted(m6, "nu")[1] ## End(Not run)
NBF() # default link functions for the Negative Binomial Family # plotting the distribution plot(function(y) dNBF(y, mu = 10, sigma = 0.5, nu=2 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rNBF(1000, mu=5, sigma=0.5, nu=2)) r <- barplot(tN, col='lightblue') # zero inflated NBF ZINBF() # default link functions for the zero inflated NBF # plotting the distribution plot(function(y) dZINBF(y, mu = 10, sigma = 0.5, nu=2, tau=.1 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rZINBF(1000, mu=5, sigma=0.5, nu=2, tau=0.1)) r <- barplot(tN, col='lightblue') ## Not run: library(gamlss) data(species) species <- transform(species, x=log(lake)) m6 <- gamlss(fish~poly(x,2), sigma.fo=~1, data=species, family=NBF, n.cyc=200) fitted(m6, "nu")[1] ## End(Not run)
The NBI()
function defines the Negative Binomial type I distribution, a two parameter distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dNBI
, pNBI
, qNBI
and rNBI
define the density, distribution function, quantile function and random
generation for the Negative Binomial type I, NBI()
, distribution.
NBI(mu.link = "log", sigma.link = "log") dNBI(x, mu = 1, sigma = 1, log = FALSE) pNBI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNBI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNBI(n, mu = 1, sigma = 1)
NBI(mu.link = "log", sigma.link = "log") dNBI(x, mu = 1, sigma = 1, log = FALSE) pNBI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNBI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNBI(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive despersion parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for Negative Binomial type I distribution.
for ,
and
. This
parameterization is equivalent to that used by Anscombe (1950) except he used
instead of
, see also pp. 483-485 of Rigby et al. (2019). The expected value is
and the variance
.
returns a gamlss.family
object which can be used to fit a Negative Binomial type I distribution in the gamlss()
function.
For values of the d,p,q,r functions switch to the Poisson distribution
is the mean and
is the standard deviation of the Negative Binomial
type I distribution (so
is the dispersion parameter in the usual GLM for the negative binomial type I distribution)
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Anscombe, F. J. (1950) Sampling theory of the negative bimomial and logarithmic distributiona, Biometrika, 37, 358-382.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gamlss.family
, NBII
, PIG
, SI
NBI() # gives information about the default links for the Negative Binomial type I distribution # plotting the distribution plot(function(y) dNBI(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rNBI(1000, mu=5, sigma=0.5)) r <- barplot(tN, col='lightblue') # library(gamlss) # data(aids) # h<-gamlss(y~cs(x,df=7)+qrt, family=NBI, data=aids) # fits the model # plot(h) # pdf.plot(family=NBI, mu=10, sigma=0.5, min=0, max=40, step=1)
NBI() # gives information about the default links for the Negative Binomial type I distribution # plotting the distribution plot(function(y) dNBI(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rNBI(1000, mu=5, sigma=0.5)) r <- barplot(tN, col='lightblue') # library(gamlss) # data(aids) # h<-gamlss(y~cs(x,df=7)+qrt, family=NBI, data=aids) # fits the model # plot(h) # pdf.plot(family=NBI, mu=10, sigma=0.5, min=0, max=40, step=1)
The NBII()
function defines the Negative Binomial type II distribution, a two parameter distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dNBII
, pNBII
, qNBII
and rNBII
define the density, distribution function, quantile function and random
generation for the Negative Binomial type II, NBII()
, distribution.
NBII(mu.link = "log", sigma.link = "log") dNBII(x, mu = 1, sigma = 1, log = FALSE) pNBII(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNBII(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNBII(n, mu = 1, sigma = 1)
NBII(mu.link = "log", sigma.link = "log") dNBII(x, mu = 1, sigma = 1, log = FALSE) pNBII(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNBII(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNBII(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive despersion parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for Negative Binomial type II distribution.
for ,
and
.
This parameterization was used by Evans (1953) and also by Johnson et al. (1993) p 200, see also pp. 485-487 of Rigby et al. (2019). Note that in this parameterization
and
.
returns a gamlss.family
object which can be used to fit a Negative Binomial type II distribution in the gamlss()
function.
is the mean and
is the standard deviation of the Negative Binomial type II distribution, so
is a dispersion parameter
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Evans, D. A. (1953). Experimental evidence concerning contagious distributions in ecology. Biometrika, 40: 186-211.
Johnson, N. L., Kotz, S. and Kemp, A. W. (1993). Univariate Discrete Distributions, 2nd edn. Wiley, New York.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gamlss.family
, NBI
, PIG
,
SI
NBII() # gives information about the default links for the Negative Binomial type II distribution # plotting the distribution plot(function(y) dNBII(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rNBII(1000, mu=5, sigma=0.5)) r <- barplot(tN, col='lightblue') # library(gamlss) # data(aids) # h<-gamlss(y~cs(x,df=7)+qrt, family=NBII, data=aids) # fits a model # plot(h) # pdf.plot(family=NBII, mu=10, sigma=0.5, min=0, max=40, step=1)
NBII() # gives information about the default links for the Negative Binomial type II distribution # plotting the distribution plot(function(y) dNBII(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rNBII(1000, mu=5, sigma=0.5)) r <- barplot(tN, col='lightblue') # library(gamlss) # data(aids) # h<-gamlss(y~cs(x,df=7)+qrt, family=NBII, data=aids) # fits a model # plot(h) # pdf.plot(family=NBII, mu=10, sigma=0.5, min=0, max=40, step=1)
This function defines the Power Exponential t distribution (NET), a four parameter distribution, for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
. The functions dNET
,
pNET
define the density and distribution function the NET distribution.
NET(mu.link = "identity", sigma.link = "log", nu.link ="identity", tau.link = "identity") pNET(q, mu=0, sigma=1, nu=1.5, tau=2, lower.tail = TRUE, log.p = FALSE) dNET(x, mu=0, sigma=1, nu=1.5, tau=2, log=FALSE) qNET(p, mu=0, sigma=1, nu=1.5, tau=2, lower.tail = TRUE, log.p = FALSE) rNET(n, mu=0, sigma=1, nu=1.5, tau=2)
NET(mu.link = "identity", sigma.link = "log", nu.link ="identity", tau.link = "identity") pNET(q, mu=0, sigma=1, nu=1.5, tau=2, lower.tail = TRUE, log.p = FALSE) dNET(x, mu=0, sigma=1, nu=1.5, tau=2, log=FALSE) qNET(p, mu=0, sigma=1, nu=1.5, tau=2, lower.tail = TRUE, log.p = FALSE) rNET(n, mu=0, sigma=1, nu=1.5, tau=2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
p |
vector of probabilities |
n |
number of observations. |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of |
tau |
vector of |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
The NET distribution was introduced by Rigby and Stasinopoulos (1994) as a robust distribution for a response
variable with heavier tails than the normal. The NET
distribution is the abbreviation of the Normal Exponential Student t distribution.
The NET distribution is a four parameter continuous distribution, although in the GAMLSS implementation only
the two parameters, mu
and sigma
, of the distribution are modelled with
nu
and tau
fixed.
The distribution takes its names because it is normal up to
nu
, Exponential from nu
to tau
(hence abs(nu)<=abs(tau)
) and Student-t with
nu*tau-1
degrees of freedom after tau
. Maximum
likelihood estimator of the third and forth parameter can be
obtained, using the GAMLSS functions, find.hyper
or prof.dev
.
For more details about the NET
distribution please refer to pp. 393-396 of of Rigby et al. (2019).
NET()
returns a gamlss.family
object which can be used to fit a Box Cox Power Exponential distribution in the gamlss()
function.
dNET()
gives the density, pNET()
gives the distribution
function.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos, D. M. (1994), Robust fitting of an additive model for variance heterogeneity, COMPSTAT : Proceedings in Computational Statistics, editors:R. Dutter and W. Grossmann, pp 263-268, Physica, Heidelberg.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
SStasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
NET() # data(abdom) plot(function(x)dNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5) plot(function(x)pNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5) # fit NET with nu=1 and tau=3 # library(gamlss) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=NET, # data=abdom, nu.start=2, tau.start=3) #plot(h)
NET() # data(abdom) plot(function(x)dNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5) plot(function(x)pNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5) # fit NET with nu=1 and tau=3 # library(gamlss) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=NET, # data=abdom, nu.start=2, tau.start=3) #plot(h)
The function NO()
defines the normal distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
, with mean equal to the parameter mu
and sigma
equal the standard deviation.
The functions dNO
, pNO
, qNO
and rNO
define the density, distribution function, quantile function and random
generation for the NO
parameterization of the normal distribution.
[A alternative parameterization with sigma
equal to the variance is given in the function NO2()
]
NO(mu.link = "identity", sigma.link = "log") dNO(x, mu = 0, sigma = 1, log = FALSE) pNO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNO(n, mu = 0, sigma = 1)
NO(mu.link = "identity", sigma.link = "log") dNO(x, mu = 0, sigma = 1, log = FALSE) pNO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNO(n, mu = 0, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The parametrization of the normal distribution given in the function NO()
is
for ,
and
see pp. 369-370 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a normal distribution in the gamlss()
function.
For the function NO()
, is the mean and
is the standard deviation (not the variance) of the normal distribution.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
NO()# gives information about the default links for the normal distribution plot(function(y) dNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qNO(y, mu=10 ,sigma=2), 0, 1) dat<-rNO(100) hist(dat) # library(gamlss) # gamlss(dat~1,family=NO) # fits a constant for mu and sigma
NO()# gives information about the default links for the normal distribution plot(function(y) dNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qNO(y, mu=10 ,sigma=2), 0, 1) dat<-rNO(100) hist(dat) # library(gamlss) # gamlss(dat~1,family=NO) # fits a constant for mu and sigma
The function NO2()
defines the normal distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
with mean equal to mu
and variance equal to sigma
.
The functions dNO2
, pNO2
, qNO2
and rNO2
define the density, distribution function, quantile function and random
generation for this specific parameterization of the normal distribution.
[A alternative parameterization with sigma
as the standard deviation is given in the function NO()
]
NO2(mu.link = "identity", sigma.link = "log") dNO2(x, mu = 0, sigma = 1, log = FALSE) pNO2(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNO2(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNO2(n, mu = 0, sigma = 1)
NO2(mu.link = "identity", sigma.link = "log") dNO2(x, mu = 0, sigma = 1, log = FALSE) pNO2(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNO2(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNO2(n, mu = 0, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The parametrization of the normal distribution given in the function NO2()
is
for ,
and
see p. 370 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a normal distribution in the gamlss()
function.
For the function NO()
, is the mean and
is the standard deviation (not the variance) of the normal distribution.
[The function
NO2()
defines the normal distribution with as the variance.]
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
NO()# gives information about the default links for the normal distribution dat<-rNO(100) hist(dat) plot(function(y) dNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qNO(y, mu=10 ,sigma=2), 0, 1) # library(gamlss) # gamlss(dat~1,family=NO) # fits a constant for mu and sigma
NO()# gives information about the default links for the normal distribution dat<-rNO(100) hist(dat) plot(function(y) dNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qNO(y, mu=10 ,sigma=2), 0, 1) # library(gamlss) # gamlss(dat~1,family=NO) # fits a constant for mu and sigma
The function NOF()
defines a normal distribution family, which has three parameters. The distribution can be used using the function gamlss()
.
The mean of NOF
is equal to mu
. The variance is equal to sigma^2*mu^nu
so the standard deviation is sigma*mu^(nu/2)
. The function is design for cases where the variance is proportional to a power of the mean. This is an instance of the Taylor's power low, see Enki et al. (2017). The functions dNOF
, pNOF
, qNOF
and rNOF
define the density, distribution function,
quantile function and random generation for the NOF
parametrization of the normal distribution family.
NOF(mu.link = "identity", sigma.link = "log", nu.link = "identity") dNOF(x, mu = 0, sigma = 1, nu = 0, log = FALSE) pNOF(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE) qNOF(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE) rNOF(n, mu = 0, sigma = 1, nu = 0)
NOF(mu.link = "identity", sigma.link = "log", nu.link = "identity") dNOF(x, mu = 0, sigma = 1, nu = 0, log = FALSE) pNOF(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE) qNOF(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE) rNOF(n, mu = 0, sigma = 1, nu = 0)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of power parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The parametrization of the normal distribution given in the function NOF()
is
for ,
,
and
see pp. 373-374 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a normal distribution family
in the gamlss()
function.
For the function NOF()
, is the mean and
is the standard deviation of the normal distribution family.
The NOF is design for fitting regression type models where the variance is proportional to a power of the mean. Models of this type are also related to the "pseudo likelihood" models of Carroll and Rubert (1987) but here a proper
likelihood is miximised.
Note that because the high correlation between the sigma
and the nu
parameter the mixed()
method should be used in the fitting.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Davidian, M. and Carroll, R. J. (1987), Variance Function Estimation, Journal of the American Statistical Association, Vol. 82, pp. 1079-1091
Enki, D G, Noufaily, A., Farrington, P., Garthwaite, P., Andrews, N. and Charlett, A. (2017) Taylor's power law and the statistical modelling of infectious disease surveillance data, Journal of the Royal Statistical Society: Series A (Statistics in Society), volume=180, number=1, pages=45-72.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
NOF()# gives information about the default links for the normal distribution family ## Not run: ## the normal distribution, fitting a constant sigma m1<-gamlss(y~poly(x,2), sigma.fo=~1, family=NO, data=abdom) ## the normal family, fitting a variance proportional to the mean (mu) m2<-gamlss(y~poly(x,2), sigma.fo=~1, family=NOF, data=abdom, method=mixed(1,20)) ## the nornal distribution fitting the variance as a function of x m3 <-gamlss(y~poly(x,2), sigma.fo=~x, family=NO, data=abdom, method=mixed(1,20)) GAIC(m1,m2,m3) ## End(Not run)
NOF()# gives information about the default links for the normal distribution family ## Not run: ## the normal distribution, fitting a constant sigma m1<-gamlss(y~poly(x,2), sigma.fo=~1, family=NO, data=abdom) ## the normal family, fitting a variance proportional to the mean (mu) m2<-gamlss(y~poly(x,2), sigma.fo=~1, family=NOF, data=abdom, method=mixed(1,20)) ## the nornal distribution fitting the variance as a function of x m3 <-gamlss(y~poly(x,2), sigma.fo=~x, family=NO, data=abdom, method=mixed(1,20)) GAIC(m1,m2,m3) ## End(Not run)
The functions PARETO()
defines the one parameter Pareto distribution for y>1
.
The functions PARETO1()
defines the one parameter Pareto distribution for y>0
.
The functions PARETOo1()
defines the one parameter Pareto distribution for y>mu
therefor requires mu
to be fixed.
The functions PARETO2()
and PARETO2o()
define the Pareto Type 2 distribution, for y>0
, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The parameters are mu
and sigma
in both functions but the parameterasation different. The mu
is identical for both PARETO2()
and PARETO2o()
. The sigma
in PARETO2o()
is the inverse of the sigma
in PARETO2()
and coresponse to the usual parameter alpha
of the Pareto distribution.
The functions dPARETO2
, pPARETO2
, qPARETO2
and rPARETO2
define the density, distribution function, quantile function and random generation for the PARETO2
parameterization of the Pareto type 2 distribution while the functions dPARETO2o
, pPARETO2o
, qPARETO2o
and rPARETO2o
define the density, distribution function, quantile function and random generation for the original PARETO2o
parameterization of the Pareto type 2 distribution.
PARETO(mu.link = "log") dPARETO(x, mu = 1, log = FALSE) pPARETO(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qPARETO(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rPARETO(n, mu = 1) PARETO1(mu.link = "log") dPARETO1(x, mu = 1, log = FALSE) pPARETO1(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qPARETO1(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rPARETO1(n, mu = 1) PARETO1o(mu.link = "log", sigma.link = "log") dPARETO1o(x, mu = 1, sigma = 0.5, log = FALSE) pPARETO1o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) qPARETO1o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) rPARETO1o(n, mu = 1, sigma = 0.5) PARETO2(mu.link = "log", sigma.link = "log") dPARETO2(x, mu = 1, sigma = 0.5, log = FALSE) pPARETO2(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) qPARETO2(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) rPARETO2(n, mu = 1, sigma = 0.5) PARETO2o(mu.link = "log", sigma.link = "log") dPARETO2o(x, mu = 1, sigma = 0.5, log = FALSE) pPARETO2o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) qPARETO2o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) rPARETO2o(n, mu = 1, sigma = 0.5)
PARETO(mu.link = "log") dPARETO(x, mu = 1, log = FALSE) pPARETO(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qPARETO(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rPARETO(n, mu = 1) PARETO1(mu.link = "log") dPARETO1(x, mu = 1, log = FALSE) pPARETO1(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qPARETO1(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rPARETO1(n, mu = 1) PARETO1o(mu.link = "log", sigma.link = "log") dPARETO1o(x, mu = 1, sigma = 0.5, log = FALSE) pPARETO1o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) qPARETO1o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) rPARETO1o(n, mu = 1, sigma = 0.5) PARETO2(mu.link = "log", sigma.link = "log") dPARETO2(x, mu = 1, sigma = 0.5, log = FALSE) pPARETO2(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) qPARETO2(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) rPARETO2(n, mu = 1, sigma = 0.5) PARETO2o(mu.link = "log", sigma.link = "log") dPARETO2o(x, mu = 1, sigma = 0.5, log = FALSE) pPARETO2o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) qPARETO2o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) rPARETO2o(n, mu = 1, sigma = 0.5)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
The parameterization of the one parameter Pareto distribution in the function PARETO
is:
for and
.
The parameterization of the Pareto Type 1 original distribution in the function PARETO1o
is:
for ,
and
see pp. 430-431 of Rigby et al. (2019).
The parameterization of the Pareto Type 2 original distribution in the function PARETO2o
is:
for ,
and
see pp. 432-433 of Rigby et al. (2019).
The parameterization of the Pareto Type 2 distribution in the function PARETO2
is:
for ,
and
see pp.433-434 The parameterization of the Pareto Type 1 original distribution in the function
PARETO1o
is:
for ,
and
see pp. 430-431 of Rigby et al. (2019).
returns a gamlss.family object which can be used to fit a Pareto type 2 distribution in the gamlss()
function.
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos
Johnson, N., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions. Wiley-Interscience, NY, USA.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
par(mfrow=c(2,2)) y<-seq(0.2,20,0.2) plot(y, dPARETO2(y), type="l" , lwd=2) q<-seq(0,20,0.2) plot(q, pPARETO2(q), ylim=c(0,1), type="l", lwd=2) p<-seq(0.0001,0.999,0.05) plot(p, qPARETO2(p), type="l", lwd=2) dat <- rPARETO2(100) hist(rPARETO2(100), nclass=30) #summary(gamlss(a~1, family="PARETO2"))
par(mfrow=c(2,2)) y<-seq(0.2,20,0.2) plot(y, dPARETO2(y), type="l" , lwd=2) q<-seq(0,20,0.2) plot(q, pPARETO2(q), ylim=c(0,1), type="l", lwd=2) p<-seq(0.0001,0.999,0.05) plot(p, qPARETO2(p), type="l", lwd=2) dat <- rPARETO2(100) hist(rPARETO2(100), nclass=30) #summary(gamlss(a~1, family="PARETO2"))
The functions define the Power Exponential distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS
fitting using the function gamlss()
.
The functions dPE
, pPE
, qPE
and rPE
define the density, distribution function,
quantile function and random generation for the specific parameterization of the power exponential distribution
showing below.
The functions dPE2
, pPE2
, qPE2
and rPE2
define the density, distribution function,
quantile function and random generation of a standard parameterization of the power exponential distribution.
PE(mu.link = "identity", sigma.link = "log", nu.link = "log") dPE(x, mu = 0, sigma = 1, nu = 2, log = FALSE) pPE(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qPE(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rPE(n, mu = 0, sigma = 1, nu = 2) PE2(mu.link = "identity", sigma.link = "log", nu.link = "log") dPE2(x, mu = 0, sigma = 1, nu = 2, log = FALSE) pPE2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qPE2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rPE2(n, mu = 0, sigma = 1, nu = 2)
PE(mu.link = "identity", sigma.link = "log", nu.link = "log") dPE(x, mu = 0, sigma = 1, nu = 2, log = FALSE) pPE(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qPE(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rPE(n, mu = 0, sigma = 1, nu = 2) PE2(mu.link = "identity", sigma.link = "log", nu.link = "log") dPE2(x, mu = 0, sigma = 1, nu = 2, log = FALSE) pPE2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qPE2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rPE2(n, mu = 0, sigma = 1, nu = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of kurtosis parameter |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Power Exponential distribution (PE) is defined as:
where and
,
for
,
,
and
.
This parametrization was used by Nelson (1991) and ensures
is the mean and
is the standard deviation of y
(for all parameter values of
,
and
within the ranges above), see p. 374 of Rigby et al. (2019)
Thw Power Exponential distribution (PE2) is defined as
see p. 376 of Rigby et al. (2019)
returns a gamlss.family
object which can be used to fit a Power Exponential distribution in the gamlss()
function.
is the mean and
is the standard deviation of the Power Exponential distribution
Mikis Stasinopoulos, Bob Rigby
Nelson, D.B. (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica, 57, 347-370.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
PE()# gives information about the default links for the Power Exponential distribution # library(gamlss) # data(abdom) # h1<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=PE, data=abdom) # fit # h2<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=PE2, data=abdom) # fit # plot(h1) # plot(h2) # leptokurtotic plot(function(x) dPE(x, mu=10,sigma=2,nu=1), 0.0, 20, main = "The PE density mu=10,sigma=2,nu=1") # platykurtotic plot(function(x) dPE(x, mu=10,sigma=2,nu=4), 0.0, 20, main = "The PE density mu=10,sigma=2,nu=4")
PE()# gives information about the default links for the Power Exponential distribution # library(gamlss) # data(abdom) # h1<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=PE, data=abdom) # fit # h2<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=PE2, data=abdom) # fit # plot(h1) # plot(h2) # leptokurtotic plot(function(x) dPE(x, mu=10,sigma=2,nu=1), 0.0, 20, main = "The PE density mu=10,sigma=2,nu=1") # platykurtotic plot(function(x) dPE(x, mu=10,sigma=2,nu=4), 0.0, 20, main = "The PE density mu=10,sigma=2,nu=4")
The PIG()
function defines the Poisson-inverse Gaussian distribution, a two parameter distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
. The PIG2()
function is a repametrization of PIG()
where mu
and sigma
are orthogonal see Heller et al. (2018).
The functions dPIG
, pPIG
, qPIG
and rPIG
define the density, distribution function, quantile function and random
generation for the Poisson-inverse Gaussian PIG()
, distribution. Also dPIG2
, pPIG2
, qPIG2
and rPIG2
are the equivalent functions for PIG2()
The functions ZAPIG()
and ZIPIG()
are the zero adjusted (hurdle) and zero inflated versions of the Poisson-inverse Gaussian distribution, respectively. That is three parameter distributions.
The functions dZAPIG
, dZIPIG
, pZAPIG
,pZIPIG
, qZAPIG
qZIPIG
rZAPIG
and rZIPIG
define the probability, cumulative, quantile and random
generation functions for the zero adjusted and zero inflated Poisson Inverse Gaussian distributions, ZAPIG()
, ZIPIG()
, respectively.
PIG(mu.link = "log", sigma.link = "log") dPIG(x, mu = 1, sigma = 1, log = FALSE) pPIG(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qPIG(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rPIG(n, mu = 1, sigma = 1, max.value = 10000) PIG2(mu.link = "log", sigma.link = "log") dPIG2(x, mu=1, sigma=1, log = FALSE) pPIG2(q, mu=1, sigma=1, lower.tail = TRUE, log.p = FALSE) qPIG2(p, mu=1, sigma=1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rPIG2(n, mu=1, sigma=1) ZIPIG(mu.link = "log", sigma.link = "log", nu.link = "logit") dZIPIG(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZIPIG(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZIPIG(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZIPIG(n, mu = 1, sigma = 1, nu = 0.3, max.value = 10000) ZAPIG(mu.link = "log", sigma.link = "log", nu.link = "logit") dZAPIG(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZAPIG(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZAPIG(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZAPIG(n, mu = 1, sigma = 1, nu = 0.3, max.value = 10000)
PIG(mu.link = "log", sigma.link = "log") dPIG(x, mu = 1, sigma = 1, log = FALSE) pPIG(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qPIG(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rPIG(n, mu = 1, sigma = 1, max.value = 10000) PIG2(mu.link = "log", sigma.link = "log") dPIG2(x, mu=1, sigma=1, log = FALSE) pPIG2(q, mu=1, sigma=1, lower.tail = TRUE, log.p = FALSE) qPIG2(p, mu=1, sigma=1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rPIG2(n, mu=1, sigma=1) ZIPIG(mu.link = "log", sigma.link = "log", nu.link = "logit") dZIPIG(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZIPIG(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZIPIG(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZIPIG(n, mu = 1, sigma = 1, nu = 0.3, max.value = 10000) ZAPIG(mu.link = "log", sigma.link = "log", nu.link = "logit") dZAPIG(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZAPIG(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZAPIG(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZAPIG(n, mu = 1, sigma = 1, nu = 0.3, max.value = 10000)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive dispersion parameter |
nu |
vector of zero probability parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
The probability function of the Poisson-inverse Gaussian distribution PIG
, is given by
where , for
where
and
and
is the modified Bessel function of the third kind, see also pp. 487-489 of Rigby et al. (2019).
[Note that the above parameterization was used by Dean, Lawless and Willmot(1989). It is also a special case of the Sichel distribution
SI()
when .] In this parameterization
and
.
The probability function of the Poisson-inverse Gaussian distribution PIG2
, see Heller, Couturier and Heritier (2018), is given by
for ,
and
and
,
is the modified Bessel function of the third kind, see pp. 487-489 of Rigby et al. (2019). In this parameterization
and
is a despertion parameter.
The definition of the zero adjusted Poison inverse Gaussian distribution, ZAPIG
and the the zero inflated Poison inverse Gaussian distribution, ZIPIG
, are given in p. 513 and pp. 514-515 of of Rigby et al. (2019), respectively.
Returns a gamlss.family
object which can be used to fit a Poisson-inverse Gaussian distribution in the gamlss()
function.
Dominique-Laurent Couturier, Mikis Stasinopoulos, Bob Rigby and Marco Enea
Dean, C., Lawless, J. F. and Willmot, G. E., A mixed poisson-inverse-Gaussian regression model, Canadian J. Statist., 17, 2, pp 171-181
Heller, G. Z., Couturier, D.L. and Heritier, S. R. (2018) Beyond mean modelling: Bias due to misspecification of dispersion in Poisson-inverse Gaussian regression Biometrical Journal, 2, pp 333-342.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gamlss.family
, NBI
, NBII
,
SI
, SICHEL
PIG()# gives information about the default links for the Poisson-inverse Gaussian distribution #plot the pdf using plot plot(function(y) dPIG(y, mu=10, sigma = 1 ), from=0, to=50, n=50+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=50),pPIG(seq(from=0,to=50), mu=10, sigma=1), type="h") # cdf # generate random sample tN <- table(Ni <- rPIG(100, mu=5, sigma=1)) r <- barplot(tN, col='lightblue') # fit a model to the data # library(gamlss) # gamlss(Ni~1,family=PIG) ZIPIG() ZAPIG()
PIG()# gives information about the default links for the Poisson-inverse Gaussian distribution #plot the pdf using plot plot(function(y) dPIG(y, mu=10, sigma = 1 ), from=0, to=50, n=50+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=50),pPIG(seq(from=0,to=50), mu=10, sigma=1), type="h") # cdf # generate random sample tN <- table(Ni <- rPIG(100, mu=5, sigma=1)) r <- barplot(tN, col='lightblue') # fit a model to the data # library(gamlss) # gamlss(Ni~1,family=PIG) ZIPIG() ZAPIG()
This function PO
defines the Poisson distribution, an one parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The functions dPO
, pPO
, qPO
and rPO
define the density, distribution function, quantile function and random
generation for the Poisson, PO()
, distribution.
PO(mu.link = "log") dPO(x, mu = 1, log = FALSE) pPO(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qPO(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rPO(n, mu = 1)
PO(mu.link = "log") dPO(x, mu = 1, log = FALSE) pPO(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qPO(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rPO(n, mu = 1)
mu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for Poisson distribution.
for and
see ee pp 476-477 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a Poisson distribution in the gamlss()
function.
is the mean of the Poisson distribution
Bob Rigby, Mikis Stasinopoulos, and Kalliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
(Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
gamlss.family
, NBI
, NBII
,
SI
, SICHEL
PO()# gives information about the default links for the Poisson distribution # fitting data using PO() # plotting the distribution plot(function(y) dPO(y, mu=10 ), from=0, to=20, n=20+1, type="h") # creating random variables and plot them tN <- table(Ni <- rPO(1000, mu=5)) r <- barplot(tN, col='lightblue') # library(gamlss) # data(aids) # h<-gamlss(y~cs(x,df=7)+qrt, family=PO, data=aids) # fits the constant+x+qrt model # plot(h) # pdf.plot(family=PO, mu=10, min=0, max=20, step=1)
PO()# gives information about the default links for the Poisson distribution # fitting data using PO() # plotting the distribution plot(function(y) dPO(y, mu=10 ), from=0, to=20, n=20+1, type="h") # creating random variables and plot them tN <- table(Ni <- rPO(1000, mu=5)) r <- barplot(tN, col='lightblue') # library(gamlss) # data(aids) # h<-gamlss(y~cs(x,df=7)+qrt, family=PO, data=aids) # fits the constant+x+qrt model # plot(h) # pdf.plot(family=PO, mu=10, min=0, max=20, step=1)
The function RG
defines the reverse Gumbel distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the
function gamlss()
.
The functions dRG
, pRG
, qRG
and rRG
define the density, distribution function, quantile function and random
generation for the specific parameterization of the reverse Gumbel distribution.
RG(mu.link = "identity", sigma.link = "log") dRG(x, mu = 0, sigma = 1, log = FALSE) pRG(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qRG(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rRG(n, mu = 0, sigma = 1)
RG(mu.link = "identity", sigma.link = "log") dRG(x, mu = 0, sigma = 1, log = FALSE) pRG(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qRG(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rRG(n, mu = 0, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The specific parameterization of the reverse Gumbel distribution used in RG
is
for ,
and
see pp. 370-371 of Rigby et al. (2019).
RG()
returns a gamlss.family
object which can be used to fit a Gumbel distribution in the gamlss()
function.
dRG()
gives the density, pGU()
gives the distribution
function, qRG()
gives the quantile function, and rRG()
generates random deviates.
The mean of the distribution is and the variance is
.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
plot(function(x) dRG(x, mu=0,sigma=1), -3, 6, main = "{Reverse Gumbel density mu=0,sigma=1}") RG()# gives information about the default links for the Gumbel distribution dat<-rRG(100, mu=10, sigma=2) # generates 100 random observations # library(gamlss) # gamlss(dat~1,family=RG) # fits a constant for each parameter mu and sigma
plot(function(x) dRG(x, mu=0,sigma=1), -3, 6, main = "{Reverse Gumbel density mu=0,sigma=1}") RG()# gives information about the default links for the Gumbel distribution dat<-rRG(100, mu=10, sigma=2) # generates 100 random observations # library(gamlss) # gamlss(dat~1,family=RG) # fits a constant for each parameter mu and sigma
The function RGE
defines the reverse generalized extreme family distribution, a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dRGE
, pRGE
, qRGE
and rRGE
define the density, distribution function, quantile function and random
generation for the specific parameterization of the reverse generalized extreme distribution given in details below.
RGE(mu.link = "identity", sigma.link = "log", nu.link = "log") dRGE(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE) pRGE(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) qRGE(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) rRGE(n, mu = 1, sigma = 0.1, nu = 1)
RGE(mu.link = "identity", sigma.link = "log", nu.link = "log") dRGE(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE) pRGE(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) qRGE(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE) rRGE(n, mu = 1, sigma = 0.1, nu = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of the shape parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Definition file for reverse generalized extreme family distribution.
The probability density function of the generalized extreme value
distribution is obtained from Johnson et al. (1995), Volume 2,
p76, equation (22.184) [where ].
The probability density function of the reverse generalized extreme value distribution
is then obtained by replacing y by -y and by
.
Hence the probability density function of the reverse generalized extreme value distribution
with is given by
for
where
and where ,
and
. Note that only the case
is allowed here. The reverse generalized extreme value distribution is denoted
as RGE(
) or as Reverse Generalized.Extreme.Family(
).
Note the the above distribution is a reparameterization of the three parameter Weibull distribution given by
given by setting ,
,
.
RGE()
returns a gamlss.family
object which can be used to fit a reverse generalized extreme distribution in the gamlss()
function.
dRGE()
gives the density, pRGE()
gives the distribution
function, qRGE()
gives the quantile function, and rRGE()
generates random deviates.
This distribution is very difficult to fit because the y values depends
on the parameter values. The RS()
and CG()
algorithms are not appropriate for this type of problem.
Bob Rigby, Mikis Stasinopoulos and Kalliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
RGE()# default links for the reverse generalized extreme family distribution newdata<-rRGE(100,mu=0,sigma=1,nu=5) # generates 100 random observations # library(gamlss) # gamlss(newdata~1, family=RGE, method=mixed(5,50)) # difficult to converse
RGE()# default links for the reverse generalized extreme family distribution newdata<-rRGE(100,mu=0,sigma=1,nu=5) # generates 100 random observations # library(gamlss) # gamlss(newdata~1, family=RGE, method=mixed(5,50)) # difficult to converse
This function defines the Skew Power exponential (SEP) distribution, a four parameter distribution,
for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
. The functions dSEP
,
pSEP
, qSEP
and rSEP
define the density,
distribution function, quantile function and random
generation for the Skew Power exponential (SEP) distribution.
SEP(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSEP(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pSEP(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE, lower.limit = mu - 5 * sigma, upper.limit = mu + 5 * sigma) rSEP(n, mu = 0, sigma = 1, nu = 0, tau = 2)
SEP(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSEP(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pSEP(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE, lower.limit = mu - 5 * sigma, upper.limit = mu + 5 * sigma) rSEP(n, mu = 0, sigma = 1, nu = 0, tau = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
lower.limit |
lower limit for the golden search to find quantiles from probabilities |
upper.limit |
upper limit for the golden search to find quantiles from probabilities |
The probability density function of the Skew Power exponential distribution, (SEP
), is defined as
for ,
,
,
and
. where
,
and
is
the pdf of an Exponential Power distribution.
SEP()
returns a gamlss.family
object which can be used to fit the SEP distribution in the gamlss()
function.
dSEP()
gives the density, pSEP()
gives the distribution
function, qSEP()
gives the quantile function, and rSEP()
generates random deviates.
The qSEP and rSEP are slow since they are relying on golden section for finding the quantiles
Bob Rigby and Mikis Stasinopoulos
Diciccio, T. J. and Mondi A. C. (2004). Inferential Aspects of the Skew Exponential Power distribution., JASA, 99, 439-450.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
SEP() # plot(function(x)dSEP(x, mu=0,sigma=1, nu=1, tau=2), -5, 5, main = "The SEP density mu=0,sigma=1,nu=1, tau=2") plot(function(x) pSEP(x, mu=0,sigma=1,nu=1, tau=2), -5, 5, main = "The BCPE cdf mu=0, sigma=1, nu=1, tau=2") dat <- rSEP(100,mu=10,sigma=1,nu=-1,tau=1.5) # library(gamlss) # gamlss(dat~1,family=SEP, control=gamlss.control(n.cyc=30))
SEP() # plot(function(x)dSEP(x, mu=0,sigma=1, nu=1, tau=2), -5, 5, main = "The SEP density mu=0,sigma=1,nu=1, tau=2") plot(function(x) pSEP(x, mu=0,sigma=1,nu=1, tau=2), -5, 5, main = "The BCPE cdf mu=0, sigma=1, nu=1, tau=2") dat <- rSEP(100,mu=10,sigma=1,nu=-1,tau=1.5) # library(gamlss) # gamlss(dat~1,family=SEP, control=gamlss.control(n.cyc=30))
These functions define the Skew Power exponential type 1 to 4 distributions. All of them are four
parameter distributions and can be used to fit a GAMLSS model.
The functions dSEP1
, dSEP2
, dSEP3
and dSEP4
define the probability distribution functions,
the functions pSEP1
, pSEP2
, pSEP3
and pSEP4
define the cumulative distribution functions
the functions qSEP1
, qSEP2
, qSEP3
and qSEP4
define the inverse cumulative distribution functions and
the functions rSEP1
, rSEP2
, rSEP3
and rSEP4
define the random generation for the Skew exponential power
distributions.
SEP1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSEP1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pSEP1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rSEP1(n, mu = 0, sigma = 1, nu = 0, tau = 2) SEP2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSEP2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pSEP2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP2(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rSEP2(n, mu = 0, sigma = 1, nu = 0, tau = 2) SEP3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dSEP3(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE) pSEP3(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP3(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) SEP4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dSEP4(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE) pSEP4(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP4(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) rSEP4(n, mu = 0, sigma = 1, nu = 2, tau = 2)
SEP1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSEP1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pSEP1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rSEP1(n, mu = 0, sigma = 1, nu = 0, tau = 2) SEP2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSEP2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pSEP2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP2(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rSEP2(n, mu = 0, sigma = 1, nu = 0, tau = 2) SEP3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dSEP3(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE) pSEP3(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP3(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) SEP4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dSEP4(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE) pSEP4(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP4(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) rSEP4(n, mu = 0, sigma = 1, nu = 2, tau = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the Skew Power exponential distribution type 1, (SEP1
), is defined as
for ,
,
,
, and
where
, and
, see pp 401-402 of Rigby et al. (2019).
The probability density function of the Skew Power exponential distribution type 2, (SEP2
), is defined as
for ,
,
,
, and
where
, and
, and
, see pp 402-404 of Rigby et al. (2019).
For SEP3
and SEP3
see pp 404-406 and pp 407-408 of Rigby et al. (2019), respectively.
SEP2()
returns a gamlss.family
object which can be used to fit the SEP2 distribution in the gamlss()
function.
dSEP2()
gives the density, pSEP2()
gives the distribution
function, qSEP2()
gives the quantile function, and rSEP2()
generates random deviates.
Bob Rigby and Mikis Stasinopoulos
Fernadez C., Osiewalski J. and Steel M.F.J.(1995) Modelling and inference with v-spherical distributions. JASA, 90, pp 1331-1340.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
SEP1() curve(dSEP4(x, mu=5 ,sigma=1, nu=2, tau=1.5), -2, 10, main = "The SEP4 density mu=5 ,sigma=1, nu=1, tau=1.5") # library(gamlss) #y<- rSEP4(100, mu=5, sigma=1, nu=2, tau=1.5);hist(y) #m1<-gamlss(y~1, family=SEP1, n.cyc=50) #m2<-gamlss(y~1, family=SEP2, n.cyc=50) #m3<-gamlss(y~1, family=SEP3, n.cyc=50) #m4<-gamlss(y~1, family=SEP4, n.cyc=50) #GAIC(m1,m2,m3,m4)
SEP1() curve(dSEP4(x, mu=5 ,sigma=1, nu=2, tau=1.5), -2, 10, main = "The SEP4 density mu=5 ,sigma=1, nu=1, tau=1.5") # library(gamlss) #y<- rSEP4(100, mu=5, sigma=1, nu=2, tau=1.5);hist(y) #m1<-gamlss(y~1, family=SEP1, n.cyc=50) #m2<-gamlss(y~1, family=SEP2, n.cyc=50) #m3<-gamlss(y~1, family=SEP3, n.cyc=50) #m4<-gamlss(y~1, family=SEP4, n.cyc=50) #GAIC(m1,m2,m3,m4)
The Sinh-Arcsinh (SHASH) distribution is a four parameter distribution,
for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
. The functions dSHASH
,
pSHASH
, qSHASH
and rSHASH
define the density,
distribution function, quantile function and random
generation for the Sinh-Arcsinh (SHASH) distribution.
There are 3 different SHASH distributions implemented in GAMLSS.
SHASH(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dSHASH(x, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, log = FALSE) pSHASH(q, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, lower.tail = TRUE, log.p = FALSE) qSHASH(p, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, lower.tail = TRUE, log.p = FALSE) rSHASH(n, mu = 0, sigma = 1, nu = 0.5, tau = 0.5) SHASHo(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSHASHo(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pSHASHo(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qSHASHo(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rSHASHo(n, mu = 0, sigma = 1, nu = 0, tau = 1) SHASHo2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSHASHo2(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pSHASHo2(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qSHASHo2(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rSHASHo2(n, mu = 0, sigma = 1, nu = 0, tau = 1)
SHASH(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dSHASH(x, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, log = FALSE) pSHASH(q, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, lower.tail = TRUE, log.p = FALSE) qSHASH(p, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, lower.tail = TRUE, log.p = FALSE) rSHASH(n, mu = 0, sigma = 1, nu = 0.5, tau = 0.5) SHASHo(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSHASHo(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pSHASHo(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qSHASHo(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rSHASHo(n, mu = 0, sigma = 1, nu = 0, tau = 1) SHASHo2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSHASHo2(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pSHASHo2(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qSHASHo2(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rSHASHo2(n, mu = 0, sigma = 1, nu = 0, tau = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the Sinh-Arcsinh distribution, SHASH
, Jones(2005), is defined as
where
and
and
for
,
,
,
and
, see pp. 396-397 of Rigby et al. (2019).
The parameters and
are the location and scale of the distribution.
The parameter
determines the left hand tail of the distribution with
indicating a lighter tail than the normal
and
heavier tail than the normal. The parameter
determines the right hand tail of the distribution in the same way.
The second form of the Sinh-Arcsinh distribution can be found in Jones and Pewsey (2009, p.2) denoted by SHASHo
and the probability density function is defined as,
where
and
and
for
,
,
,
and
, see pp. 398-400 of Rigby et al. (2019)
The third form of the Sinh-Arcsinh distribution (Jones and Pewsey, 2009, p.8) divides the distribution by sigma for the density of the unstandardized variable. This distribution is denoted by SHASHo2
and has pdf
where , with
and
as for the pdf of the
SHASHo
distribution,
for ,
,
,
and
.
SHASH()
returns a gamlss.family
object which can be used to fit the SHASH distribution in the gamlss()
function.
dSHASH()
gives the density, pSHASH()
gives the distribution
function, qSHASH()
gives the quantile function, and rSHASH()
generates random deviates.
The qSHASH and rSHASH are slow since they are relying on golden section for finding the quantiles
Bob Rigby, Mikis Stasinopoulos and Fiona McElduff
Jones, M. C. (2006) p 546-547 in the discussion of Rigby, R. A. and Stasinopoulos D. M. (2005) Appl. Statist., 54, part 3.
Jones and Pewsey (2009) Sinh-arcsinh distributions. Biometrika. 96(4), pp. 761?780.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
SHASH() # plot(function(x)dSHASH(x, mu=0,sigma=1, nu=1, tau=2), -5, 5, main = "The SHASH density mu=0,sigma=1,nu=1, tau=2") plot(function(x) pSHASH(x, mu=0,sigma=1,nu=1, tau=2), -5, 5, main = "The BCPE cdf mu=0, sigma=1, nu=1, tau=2") dat<-rSHASH(100,mu=10,sigma=1,nu=1,tau=1.5) hist(dat) # library(gamlss) # gamlss(dat~1,family=SHASH, control=gamlss.control(n.cyc=30))
SHASH() # plot(function(x)dSHASH(x, mu=0,sigma=1, nu=1, tau=2), -5, 5, main = "The SHASH density mu=0,sigma=1,nu=1, tau=2") plot(function(x) pSHASH(x, mu=0,sigma=1,nu=1, tau=2), -5, 5, main = "The BCPE cdf mu=0, sigma=1, nu=1, tau=2") dat<-rSHASH(100,mu=10,sigma=1,nu=1,tau=1.5) hist(dat) # library(gamlss) # gamlss(dat~1,family=SHASH, control=gamlss.control(n.cyc=30))
The SI()
function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dSI
, pSI
, qSI
and rSI
define the density, distribution function, quantile function and random
generation for the Sichel SI()
, distribution.
SI(mu.link = "log", sigma.link = "log", nu.link = "identity") dSI(x, mu = 0.5, sigma = 0.02, nu = -0.5, log = FALSE) pSI(q, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, log.p = FALSE) qSI(p, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rSI(n, mu = 0.5, sigma = 0.02, nu = -0.5) tofyS(y, mu, sigma, nu, what = 1)
SI(mu.link = "log", sigma.link = "log", nu.link = "identity") dSI(x, mu = 0.5, sigma = 0.02, nu = -0.5, log = FALSE) pSI(q, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, log.p = FALSE) qSI(p, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rSI(n, mu = 0.5, sigma = 0.02, nu = -0.5) tofyS(y, mu, sigma, nu, what = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive mu |
sigma |
vector of positive despersion parameter |
nu |
vector of nu |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
y |
the y variable. The function |
what |
take values 1 or 2, for function |
The probability function of the Sichel distribution is given by
where , for
where
,
and
and
is the
modified Bessel function of the third kind.
Note that the above parameterization is different from Stein, Zucchini and Juritz (1988) who use the above probability function but treat
,
and
as the parameters. Note that
. See also pp 510-511 of Rigby et al. (2019).
Returns a gamlss.family
object which can be used to fit a Sichel distribution in the gamlss()
function.
Akantziliotou C., Rigby, R. A., Stasinopoulos D. M. and Marco Enea
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stein, G. Z., Zucchini, W. and Juritz, J. M. (1987). Parameter Estimation of the Sichel Distribution and its Multivariate Extension. Journal of American Statistical Association, 82, 938-944.
(see also https://www.gamlss.com/).
gamlss.family
, PIG
, NBI
,
NBII
SI()# gives information about the default links for the Sichel distribution #plot the pdf using plot plot(function(y) dSI(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pSI(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf # generate random sample tN <- table(Ni <- rSI(100, mu=5, sigma=1, nu=1)) r <- barplot(tN, col='lightblue') # fit a model to the data # library(gamlss) # gamlss(Ni~1,family=SI, control=gamlss.control(n.cyc=50))
SI()# gives information about the default links for the Sichel distribution #plot the pdf using plot plot(function(y) dSI(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pSI(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf # generate random sample tN <- table(Ni <- rSI(100, mu=5, sigma=1, nu=1)) r <- barplot(tN, col='lightblue') # fit a model to the data # library(gamlss) # gamlss(Ni~1,family=SI, control=gamlss.control(n.cyc=50))
The SICHEL()
function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dSICHEL
, pSICHEL
, qSICHEL
and rSICHEL
define the density, distribution function, quantile function and random
generation for the Sichel SICHEL()
, distribution. The function VSICHEL
gives the variance of a fitted Sichel model.
The functions ZASICHEL()
and ZISICHEL()
are the zero adjusted (hurdle) and zero inflated versions of the Sichel distribution, respectively. That is four parameter distributions.
The functions dZASICHEL
, dZISICHEL
, pZASICHEL
,pZISICHEL
, qZASICHEL
qZISICHEL
rZASICHEL
and rZISICHEL
define the probability, cumulative, quantile and random
generation functions for the zero adjusted and zero inflated Sichel distributions, ZASICHEL()
, ZISICHEL()
, respectively.
SICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity") dSICHEL(x, mu=1, sigma=1, nu=-0.5, log=FALSE) pSICHEL(q, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE, log.p = FALSE) qSICHEL(p, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rSICHEL(n, mu=1, sigma=1, nu=-0.5, max.value = 10000) VSICHEL(obj) tofySICHEL(y, mu, sigma, nu) ZASICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "logit") dZASICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE) pZASICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZASICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZASICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, max.value = 10000) ZISICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "logit") dZISICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE) pZISICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZISICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZISICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, max.value = 10000)
SICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity") dSICHEL(x, mu=1, sigma=1, nu=-0.5, log=FALSE) pSICHEL(q, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE, log.p = FALSE) qSICHEL(p, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rSICHEL(n, mu=1, sigma=1, nu=-0.5, max.value = 10000) VSICHEL(obj) tofySICHEL(y, mu, sigma, nu) ZASICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "logit") dZASICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE) pZASICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZASICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZASICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, max.value = 10000) ZISICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "logit") dZISICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE) pZISICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, lower.tail = TRUE, log.p = FALSE) qZISICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZISICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, max.value = 10000)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive |
sigma |
vector of positive dispersion parameter |
nu |
vector of |
tau |
vector of probabilities |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
obj |
a fitted Sichel gamlss model |
y |
the y variable, the |
The probability function of the Sichel distribution SICHEL
is given by
for ,
,
and
where
and
is the modified Bessel function of the third kind see pp 508-510 of Rigby et al. (2019).
The expected value in this parametrization is
. i.e.
.
Note that the above parametrization is different from Stein, Zucchini and Juritz (1988) who use the above probability function
but treat
,
and
as the parameters.
The definition of the zero adjusted Sichel distribution, ZASICHEL
and the the zero inflated Sichel distribution, ZISICHEL
, are given in pp. 517-518 and pp. 519-520 of of Rigby et al. (2019), respectively.
Returns a gamlss.family
object which can be used to fit a Sichel distribution in the gamlss()
function.
Rigby, R. A., Stasinopoulos D. M., Akantziliotou C and Marco Enea.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Rigby, R. A., Stasinopoulos, D. M., & Akantziliotou, C. (2008). A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Computational Statistics & Data Analysis, 53(2), 381-393.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stein, G. Z., Zucchini, W. and Juritz, J. M. (1987). Parameter Estimation of the Sichel Distribution and its Multivariate Extension. Journal of American Statistical Association, 82, 938-944.
(see also https://www.gamlss.com/).
gamlss.family
, PIG
, SI
SICHEL()# gives information about the default links for the Sichel distribution #plot the pdf using plot plot(function(y) dSICHEL(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pSICHEL(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf # generate random sample tN <- table(Ni <- rSICHEL(100, mu=5, sigma=1, nu=1)) r <- barplot(tN, col='lightblue') # fit a model to the data # library(gamlss) # gamlss(Ni~1,family=SICHEL, control=gamlss.control(n.cyc=50))
SICHEL()# gives information about the default links for the Sichel distribution #plot the pdf using plot plot(function(y) dSICHEL(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pSICHEL(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf # generate random sample tN <- table(Ni <- rSICHEL(100, mu=5, sigma=1, nu=1)) r <- barplot(tN, col='lightblue') # fit a model to the data # library(gamlss) # gamlss(Ni~1,family=SICHEL, control=gamlss.control(n.cyc=50))
The functions SIMPLEX()
define the simplex distribution, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. SIMPLEX()
has mean equal to the parameter mu
and sigma
as scale parameter, see below.
The functions dSIMPLEX
, pSIMPLEX
qSIMPLEX
and rSIMPLEX
define the density, comulative distribution function, quantile function and random
generation for the simplex distribution.
SIMPLEX(mu.link = "logit", sigma.link = "log") dSIMPLEX(x, mu = 0.5, sigma = 1, log = FALSE) pSIMPLEX(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) qSIMPLEX(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) rSIMPLEX(n = 1, mu = 0.5, sigma = 1)
SIMPLEX(mu.link = "logit", sigma.link = "log") dSIMPLEX(x, mu = 0.5, sigma = 1, log = FALSE) pSIMPLEX(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) qSIMPLEX(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) rSIMPLEX(n = 1, mu = 0.5, sigma = 1)
mu.link |
the |
sigma.link |
the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The simplex distribution, SIMPLEX
, is given as
for ,
and
see p 464 of Rigby et al. (2019).
SIMPLEX()
returns a gamlss.family
object which can be used to fit a simplex distribution in the gamlss()
function.
Bob Rigby, Mikis Stasinopoulos and Fernanda De Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
SIMPLEX()# default links for the simplex distribution plot(function(y) dSIMPLEX(y, mu=.5 ,sigma=1), 0.001, .999) plot(function(y) pSIMPLEX(y, mu=.5 ,sigma=1), 0.001, 0.999) plot(function(y) qSIMPLEX(y, mu=.5 ,sigma=1), 0.001, 0.999) plot(function(y) qSIMPLEX(y, mu=.5 ,sigma=1, lower.tail=FALSE), 0.001, .999)
SIMPLEX()# default links for the simplex distribution plot(function(y) dSIMPLEX(y, mu=.5 ,sigma=1), 0.001, .999) plot(function(y) pSIMPLEX(y, mu=.5 ,sigma=1), 0.001, 0.999) plot(function(y) qSIMPLEX(y, mu=.5 ,sigma=1), 0.001, 0.999) plot(function(y) qSIMPLEX(y, mu=.5 ,sigma=1, lower.tail=FALSE), 0.001, .999)
The function SN1()
defines the Skew Normal Type 1 distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
, with parameters mu
, sigma
and nu
. The functions dSN1
, pSN1
, qSN1
and rSN1
define the density, distribution function, quantile function and random generation for the SN1
parameterization of the Skew Normal Type 1 distribution.
SN1(mu.link = "identity", sigma.link = "log", nu.link="identity") dSN1(x, mu = 0, sigma = 1, nu = 0, log = FALSE) pSN1(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE) qSN1(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE) rSN1(n, mu = 0, sigma = 1, nu = 0)
SN1(mu.link = "identity", sigma.link = "log", nu.link="identity") dSN1(x, mu = 0, sigma = 1, nu = 0, log = FALSE) pSN1(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE) qSN1(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE) rSN1(n, mu = 0, sigma = 1, nu = 0)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
The parameterization of the Skew Normal Type 1 distribution in the function SN1
is
for ,
,
and
where
and
and
are the pdf and cdf of the standard nornal distribution, respectively, see pp. 378-379 of Rigby et al. (2019).
returns a gamlss.family object which can be used to fit a Skew Normal Type 1 distribution in the gamlss()
function.
This is a special case of the Skew Exponential Power type 1 distribution (SEP1
) where tau=2
.
Mikis Stasinopoulos, Bob Rigby and Fiona McElduff
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
par(mfrow=c(2,2)) y<-seq(-3,3,0.2) plot(y, dSN1(y), type="l" , lwd=2) q<-seq(-3,3,0.2) plot(q, pSN1(q), ylim=c(0,1), type="l", lwd=2) p<-seq(0.0001,0.999,0.05) plot(p, qSN1(p), type="l", lwd=2) dat <- rSN1(100) hist(rSN1(100), nclass=30)
par(mfrow=c(2,2)) y<-seq(-3,3,0.2) plot(y, dSN1(y), type="l" , lwd=2) q<-seq(-3,3,0.2) plot(q, pSN1(q), ylim=c(0,1), type="l", lwd=2) p<-seq(0.0001,0.999,0.05) plot(p, qSN1(p), type="l", lwd=2) dat <- rSN1(100) hist(rSN1(100), nclass=30)
The function SN2()
defines the Skew Normal Type 2 distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
, with parameters mu
, sigma
and nu
. The functions dSN2
, pSN2
, qSN2
and rSN2
define the density, distribution function, quantile function and random generation for the SN2
parameterization of the Skew Normal Type 2 distribution.
SN2(mu.link = "identity", sigma.link = "log", nu.link = "log") dSN2(x, mu = 0, sigma = 1, nu = 2, log = FALSE) pSN2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qSN2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rSN2(n, mu = 0, sigma = 1, nu = 2)
SN2(mu.link = "identity", sigma.link = "log", nu.link = "log") dSN2(x, mu = 0, sigma = 1, nu = 2, log = FALSE) pSN2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) qSN2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE) rSN2(n, mu = 0, sigma = 1, nu = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of scale parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
The parameterization of the Skew Normal Type 2 distribution in the function SN2
is
if
if
for ,
,
and
where
and
see pp. 380-381 of Rigby et al. (2019).
returns a gamlss.family object which can be used to fit a Skew Normal Type 2 distribution in the gamlss()
function.
This is a special case of the Skew Exponential Power type 3 distribution (SEP3
)where tau=2
.
Mikis Stasinopoulos, Bob Rigby and Fiona McElduff.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
par(mfrow=c(2,2)) y<-seq(-3,3,0.2) plot(y, dSN2(y), type="l" , lwd=2) q<-seq(-3,3,0.2) plot(q, pSN2(q), ylim=c(0,1), type="l", lwd=2) p<-seq(0.0001,0.999,0.05) plot(p, qSN2(p), type="l", lwd=2) dat <- rSN2(100) hist(rSN2(100), nclass=30)
par(mfrow=c(2,2)) y<-seq(-3,3,0.2) plot(y, dSN2(y), type="l" , lwd=2) q<-seq(-3,3,0.2) plot(q, pSN2(q), ylim=c(0,1), type="l", lwd=2) p<-seq(0.0001,0.999,0.05) plot(p, qSN2(p), type="l", lwd=2) dat <- rSN2(100) hist(rSN2(100), nclass=30)
There are 5 different skew t distributions implemented in GAMLSS.
The Skew t type 1 distribution, ST1
, is based on Azzalini (1986), see pp. 411-412 of Rigby et al. (2019).
The skew t type 2 distribution, ST2
, is based on Azzalini and Capitanio (2003) see pp. 412-414 of Rigby et al. (2019).
The skew t type 3 , ST3
and ST3C
, distribution is based Fernande and Steel (1998) see pp 413-415 of Rigby et al. (2019).
The difference betwwen the ST3
and ST3C
is that the first is written entirely in R
while the second is in C
.
The skew t type 4 distribution , ST4
, is a spliced-shape distribution see
see pp 413-415 of Rigby et al. (2019).
The skew t type 5 distribution , ST5
, is Jones and Faddy (2003).
The SST
is a reparametrised version of ST3
where sigma
is the standard deviation of the distribution.
ST1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log") dST1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pST1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qST1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rST1(n, mu = 0, sigma = 1, nu = 0, tau = 2) ST2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dST2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pST2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qST2(p, mu = 1, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rST2(n, mu = 0, sigma = 1, nu = 0, tau = 2) ST3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST3(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST3(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST3(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST3(n, mu = 0, sigma = 1, nu = 1, tau = 10) ST3C(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST3C(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST3C(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST3C(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST3C(n, mu = 0, sigma = 1, nu = 1, tau = 10) SST(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "logshiftto2") dSST(x, mu = 0, sigma = 1, nu = 0.8, tau = 7, log = FALSE) pSST(q, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE) qSST(p, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE) rSST(n, mu = 0, sigma = 1, nu = 0.8, tau = 7) ST4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST4(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST4(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST4(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST4(n, mu = 0, sigma = 1, nu = 1, tau = 10) ST5(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dST5(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pST5(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qST5(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rST5(n, mu = 0, sigma = 1, nu = 0, tau = 1)
ST1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log") dST1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pST1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qST1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rST1(n, mu = 0, sigma = 1, nu = 0, tau = 2) ST2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dST2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pST2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qST2(p, mu = 1, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rST2(n, mu = 0, sigma = 1, nu = 0, tau = 2) ST3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST3(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST3(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST3(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST3(n, mu = 0, sigma = 1, nu = 1, tau = 10) ST3C(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST3C(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST3C(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST3C(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST3C(n, mu = 0, sigma = 1, nu = 1, tau = 10) SST(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "logshiftto2") dSST(x, mu = 0, sigma = 1, nu = 0.8, tau = 7, log = FALSE) pSST(q, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE) qSST(p, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE) rSST(n, mu = 0, sigma = 1, nu = 0.8, tau = 7) ST4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST4(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST4(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST4(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST4(n, mu = 0, sigma = 1, nu = 1, tau = 10) ST5(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dST5(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pST5(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qST5(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rST5(n, mu = 0, sigma = 1, nu = 0, tau = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of |
sigma |
vector of scale parameter values |
nu |
vector of |
tau |
vector of |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The definitions of all Skew t distributions is given in pp.409-420 of of Rigby et al. (2019).
The mean of the ex-Gaussian is and the variance is
.
Bob Rigby and Mikis Stasinopoulos
Azzalini A. (1986) Futher results on a class of distributions which includes the normal ones, Statistica, 46, pp. 199-208.
Azzalini A. and Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65, pp. 367-389.
Jones, M.C. and Faddy, M. J. (2003) A skew extension of the t distribution, with applications. Journal of the Royal Statistical Society, Series B, 65, pp 159-174.
Fernandez, C. and Steel, M. F. (1998) On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93, pp. 359-371.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
y<- rST5(200, mu=5, sigma=1, nu=.1) hist(y) curve(dST5(x, mu=30 ,sigma=5,nu=-1), -50, 50, main = "The ST5 density mu=30 ,sigma=5,nu=1") # library(gamlss) # m1<-gamlss(y~1, family=ST1) # m2<-gamlss(y~1, family=ST2) # m3<-gamlss(y~1, family=ST3) # m4<-gamlss(y~1, family=ST4) # m5<-gamlss(y~1, family=ST5) # GAIC(m1,m2,m3,m4,m5)
y<- rST5(200, mu=5, sigma=1, nu=.1) hist(y) curve(dST5(x, mu=30 ,sigma=5,nu=-1), -50, 50, main = "The ST5 density mu=30 ,sigma=5,nu=1") # library(gamlss) # m1<-gamlss(y~1, family=ST1) # m2<-gamlss(y~1, family=ST2) # m3<-gamlss(y~1, family=ST3) # m4<-gamlss(y~1, family=ST4) # m5<-gamlss(y~1, family=ST5) # GAIC(m1,m2,m3,m4,m5)
The function TF
defines the t-family distribution, a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dTF
, pTF
, qTF
and rTF
define the density, distribution function, quantile function and random
generation for the specific parameterization of the t distribution given in details below, with mean equal to
and standard deviation equal to
with the degrees of freedom
The function
TF2
is a different parametrization where sigma
is the standard deviation.
TF(mu.link = "identity", sigma.link = "log", nu.link = "log") dTF(x, mu = 0, sigma = 1, nu = 10, log = FALSE) pTF(q, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE) qTF(p, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE) rTF(n, mu = 0, sigma = 1, nu = 10) TF2(mu.link = "identity", sigma.link = "log", nu.link = "logshiftto2") dTF2(x, mu = 0, sigma = 1, nu = 10, log = FALSE) pTF2(q, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE) qTF2(p, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE) rTF2(n, mu = 0, sigma = 1, nu = 10)
TF(mu.link = "identity", sigma.link = "log", nu.link = "log") dTF(x, mu = 0, sigma = 1, nu = 10, log = FALSE) pTF(q, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE) qTF(p, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE) rTF(n, mu = 0, sigma = 1, nu = 10) TF2(mu.link = "identity", sigma.link = "log", nu.link = "logshiftto2") dTF2(x, mu = 0, sigma = 1, nu = 10, log = FALSE) pTF2(q, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE) qTF2(p, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE) rTF2(n, mu = 0, sigma = 1, nu = 10)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of the degrees of freedom parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Definition file for t family distribution TF()
:
for ,
,
and
see pp. 382-383 of Rigby et al. (2019).
Note that
has a standard t distribution with degrees of freedom
see pp. 382-383 of Rigby et al. (2019).
Definition file for t family distribution TF2()
:
for ,
,
and
see pp. 382-383 of Rigby et al. (2019).
Note that
has a standard t distribution with degrees of freedom
see pp. 383-384 of Rigby et al. (2019).
TF()
returns a gamlss.family
object which can be used to fit a t distribution in the gamlss()
function.
dTF()
gives the density, pTF()
gives the distribution
function, qTF()
gives the quantile function, and rTF()
generates random deviates. The latest functions are based on the equivalent R
functions for gamma distribution.
is the mean and
is the standard deviation of the t family distribution.
is a positive real valued parameter.
Mikis Stasinopoulos, Bob Rigby and Kalliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
TF()# gives information about the default links for the t-family distribution # library(gamlss) #data(abdom) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=TF, data=abdom) # fits #plot(h) newdata<-rTF(1000,mu=0,sigma=1,nu=5) # generates 1000 random observations hist(newdata)
TF()# gives information about the default links for the t-family distribution # library(gamlss) #data(abdom) #h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=TF, data=abdom) # fits #plot(h) newdata<-rTF(1000,mu=0,sigma=1,nu=5) # generates 1000 random observations hist(newdata)
The function WARING()
defines the Waring distribution, a two parameter
distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
, with mean equal to the parameter mu
and scale parameter sigma
. The functions dWARING
, pWARING
, qWARING
and rWARING
define the density, distribution function, quantile function and random generation for the WARING
parameterization of the Waring distribution.
WARING(mu.link = "log", sigma.link = "log") dWARING(x, mu = 2, sigma = 2, log = FALSE) pWARING(q, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE) qWARING(p, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rWARING(n, mu = 2, sigma = 2)
WARING(mu.link = "log", sigma.link = "log") dWARING(x, mu = 2, sigma = 2, log = FALSE) pWARING(q, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE) qWARING(p, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rWARING(n, mu = 2, sigma = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
x |
vector of (non-negative integer) quantiles. |
q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of random values to return. |
mu |
vector of positive |
sigma |
vector of positive |
lower.tail |
logical; if |
log , log.p
|
logical; if |
max.value |
constant; generates a sequence of values for the cdf function. |
The Waring distribution, WARING
, has density,
for ,
and
with
, see pp. 490-492 of Rigby et al. (2019).
Returns a gamlss.family
object which can be used to fit a Waring distribution in the gamlss()
function.
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos. [email protected]
Wimmer, G. and Altmann, G. (1999) Thesaurus of univariate discrete probability distributions. Stamm.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
par(mfrow=c(2,2)) y<-seq(0,20,1) plot(y, dWARING(y), type="h") q <- seq(0, 20, 1) plot(q, pWARING(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qWARING(p), type="s") dat <- rWARING(100) hist(dat) #summary(gamlss(dat~1, family=WARING))
par(mfrow=c(2,2)) y<-seq(0,20,1) plot(y, dWARING(y), type="h") q <- seq(0, 20, 1) plot(q, pWARING(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qWARING(p), type="s") dat <- rWARING(100) hist(dat) #summary(gamlss(dat~1, family=WARING))
The function WEI
can be used to define the Weibull distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. [Note that the GAMLSS function WEI2
uses a
different parameterization for fitting the Weibull distribution.]
The functions dWEI
, pWEI
, qWEI
and rWEI
define the density, distribution function, quantile function and random
generation for the specific parameterization of the Weibul distribution.
WEI(mu.link = "log", sigma.link = "log") dWEI(x, mu = 1, sigma = 1, log = FALSE) pWEI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qWEI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rWEI(n, mu = 1, sigma = 1)
WEI(mu.link = "log", sigma.link = "log") dWEI(x, mu = 1, sigma = 1, log = FALSE) pWEI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qWEI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rWEI(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of the mu parameter |
sigma |
vector of sigma parameter |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The parameterization of the function WEI
is given by
for ,
and
see pp. 435-436 of Rigby et al. (2019).
The GAMLSS functions
dWEI
, pWEI
, qWEI
, and rWEI
can be used to provide the pdf, the cdf, the quantiles and
random generated numbers for the Weibull distribution with argument mu
, and sigma
.
[See the GAMLSS function WEI2
for a different parameterization of the Weibull.]
WEI()
returns a gamlss.family
object which can be used to fit a Weibull distribution in the gamlss()
function.
dWEI()
gives the density, pWEI()
gives the distribution
function, qWEI()
gives the quantile function, and rWEI()
generates random deviates. The latest functions are based on the equivalent R
functions for Weibull distribution.
The mean in WEI
is given by and the variance
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
WEI() dat<-rWEI(100, mu=10, sigma=2) # library(gamlss) # gamlss(dat~1, family=WEI)
WEI() dat<-rWEI(100, mu=10, sigma=2) # library(gamlss) # gamlss(dat~1, family=WEI)
The function WEI2
can be used to define the Weibull distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
This is the parameterization of the Weibull distribution usually used in proportional hazard models and is defined in details below.
[Note that the GAMLSS function WEI
uses a
different parameterization for fitting the Weibull distribution.]
The functions dWEI2
, pWEI2
, qWEI2
and rWEI2
define the density, distribution function, quantile function and random
generation for the specific parameterization of the Weibull distribution.
WEI2(mu.link = "log", sigma.link = "log") dWEI2(x, mu = 1, sigma = 1, log = FALSE) pWEI2(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qWEI2(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rWEI2(n, mu = 1, sigma = 1)
WEI2(mu.link = "log", sigma.link = "log") dWEI2(x, mu = 1, sigma = 1, log = FALSE) pWEI2(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qWEI2(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rWEI2(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of the mu parameter values |
sigma |
vector of sigma parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The parameterization of the function WEI2
is given by
for ,
and
, see pp. 436-437 of Rigby et al. (2019).
The GAMLSS functions
dWEI2
, pWEI2
, qWEI2
, and rWEI2
can be used to provide the pdf, the cdf, the quantiles and
random generated numbers for the Weibull distribution with argument mu
, and sigma
.
[See the GAMLSS function WEI
for a different parameterization of the Weibull.]
WEI2()
returns a gamlss.family
object which can be used to fit a Weibull distribution in the gamlss()
function.
dWEI2()
gives the density, pWEI2()
gives the distribution
function, qWEI2()
gives the quantile function, and rWEI2()
generates random deviates. The latest functions are based on the equivalent R
functions for Weibull distribution.
In WEI2
the estimated parameters mu
and sigma
can be highly correlated so it is advisable to use the
CG()
method for fitting [as the RS() method can be veru slow in this situation.]
The mean in WEI2
is given by and the variance
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
WEI2() dat<-rWEI(100, mu=.1, sigma=2) hist(dat) # library(gamlss) # gamlss(dat~1, family=WEI2, method=CG())
WEI2() dat<-rWEI(100, mu=.1, sigma=2) hist(dat) # library(gamlss) # gamlss(dat~1, family=WEI2, method=CG())
The function WEI3
can be used to define the Weibull distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
This is a parameterization of the Weibull distribution where is the mean of the distribution.
[Note that the GAMLSS functions
WEI
and WEI2
use
different parameterizations for fitting the Weibull distribution.]
The functions dWEI3
, pWEI3
, qWEI3
and rWEI3
define the density, distribution function, quantile function and random
generation for the specific parameterization of the Weibull distribution.
WEI3(mu.link = "log", sigma.link = "log") dWEI3(x, mu = 1, sigma = 1, log = FALSE) pWEI3(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qWEI3(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rWEI3(n, mu = 1, sigma = 1)
WEI3(mu.link = "log", sigma.link = "log") dWEI3(x, mu = 1, sigma = 1, log = FALSE) pWEI3(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qWEI3(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rWEI3(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of the mu parameter values |
sigma |
vector of sigma parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The parameterization of the function WEI3
is given by
where for
,
and
see pp. 437-438 of Rigby et al. (2019).
The GAMLSS functions
dWEI3
, pWEI3
, qWEI3
, and rWEI3
can be used to provide the pdf, the cdf, the quantiles and
random generated numbers for the Weibull distribution with argument mu
, and sigma
.
[See the GAMLSS function WEI
for a different parameterization of the Weibull.]
WEI3()
returns a gamlss.family
object which can be used to fit a Weibull distribution in the gamlss()
function.
dWEI3()
gives the density, pWEI3()
gives the distribution
function, qWEI3()
gives the quantile function, and rWEI3()
generates random deviates. The latest functions are based on the equivalent R
functions for Weibull distribution.
In WEI3
the estimated parameters mu
and sigma
can be highly correlated so it is advisable to use the
CG()
method for fitting [as the RS() method can be very slow in this situation.]
The mean in WEI3
is given by and the variance
see pp. 438 of Rigby et al. (2019)
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
WEI3() dat<-rWEI(100, mu=.1, sigma=2) # library(gamlss) # gamlss(dat~1, family=WEI3, method=CG())
WEI3() dat<-rWEI(100, mu=.1, sigma=2) # library(gamlss) # gamlss(dat~1, family=WEI3, method=CG())
The function YULE
defines the Yule distribution, a one parameter
distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
, with mean equal to the parameter mu
.
The functions dYULE
, pYULE
, qYULE
and rYULE
define
the density, distribution function, quantile function and random generation for
the YULE
parameterization of the Yule distribution.
YULE(mu.link = "log") dYULE(x, mu = 2, log = FALSE) pYULE(q, mu = 2, lower.tail = TRUE, log.p = FALSE) qYULE(p, mu = 2, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rYULE(n, mu = 2)
YULE(mu.link = "log") dYULE(x, mu = 2, log = FALSE) pYULE(q, mu = 2, lower.tail = TRUE, log.p = FALSE) qYULE(p, mu = 2, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rYULE(n, mu = 2)
mu.link |
Defines the |
x |
vector of (non-negative integer) quantiles. |
q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of random values to return. |
mu |
vector of positive |
lower.tail |
logical; if |
log , log.p
|
logical; if |
max.value |
constant; generates a sequence of values for the cdf function. |
The Yule distribution has density
for and
, see pp 477-478 of Rigby et al. (2019).
Returns a gamlss.family
object which can be used to fit a Yule distribution in the gamlss()
function.
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Wimmer, G. and Altmann, G. (1999) Thesaurus of univariate discrete probability distributions. Stamm.
(see also https://www.gamlss.com/).
par(mfrow=c(2,2)) y<-seq(0,20,1) plot(y, dYULE(y), type="h") q <- seq(0, 20, 1) plot(q, pYULE(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qYULE(p), type="s") dat <- rYULE(100) hist(dat) #summary(gamlss(dat~1, family=YULE))
par(mfrow=c(2,2)) y<-seq(0,20,1) plot(y, dYULE(y), type="h") q <- seq(0, 20, 1) plot(q, pYULE(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qYULE(p), type="s") dat <- rYULE(100) hist(dat) #summary(gamlss(dat~1, family=YULE))
The function ZIBB
defines the zero inflated beta binomial distribution, a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dZIBB
, pZIBB
, qZIBB
and rZINN
define the
density, distribution function, quantile function
and random generation for the zero inflated beta binomial, ZIBB
, distribution.
The function ZABB
defines the zero adjusted beta binomial distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dZABB
, pZABB
,
qZABB
and rZABB
define the
density, distribution function, quantile function
and random generation for the zero inflated beta binomial, ZABB()
, distribution.
ZABB(mu.link = "logit", sigma.link = "log", nu.link = "logit") ZIBB(mu.link = "logit", sigma.link = "log", nu.link = "logit") dZIBB(x, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, log = FALSE) dZABB(x, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, log = FALSE) pZIBB(q, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE) pZABB(q, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE) qZIBB(p, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE) qZABB(p, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE) rZIBB(n, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1) rZABB(n, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1)
ZABB(mu.link = "logit", sigma.link = "log", nu.link = "logit") ZIBB(mu.link = "logit", sigma.link = "log", nu.link = "logit") dZIBB(x, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, log = FALSE) dZABB(x, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, log = FALSE) pZIBB(q, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE) pZABB(q, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE) qZIBB(p, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE) qZABB(p, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE) rZIBB(n, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1) rZABB(n, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive probabilities |
sigma |
vector of positive dispertion parameter |
nu |
vector of positive probabilities |
bd |
vector of binomial denominators |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
The definition of the zero adjusted beta binomial distribution, ZABB
and the the zero inflated beta binomial distribution, ZIBB
, are given in p. 527 and p. 528 of of Rigby et al. (2019), respectively.
The functions ZIBB
and ZABB
return a gamlss.family
object which can be used to fit a
zero inflated or zero adjusted beta binomial distribution respectively in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07..
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
ZIBB() ZABB() # creating data and plotting them dat <- rZIBB(1000, mu=.5, sigma=.5, nu=0.1, bd=10) r <- barplot(table(dat), col='lightblue') dat1 <- rZABB(1000, mu=.5, sigma=.2, nu=0.1, bd=10) r1 <- barplot(table(dat1), col='lightblue')
ZIBB() ZABB() # creating data and plotting them dat <- rZIBB(1000, mu=.5, sigma=.5, nu=0.1, bd=10) r <- barplot(table(dat), col='lightblue') dat1 <- rZABB(1000, mu=.5, sigma=.2, nu=0.1, bd=10) r1 <- barplot(table(dat1), col='lightblue')
The ZABI()
function defines the zero adjusted binomial distribution, a two parameter distribution,
for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dZABI
, pZABI
, qZABI
and rZABI
define the density, distribution function, quantile function and random
generation for the zero adjusted binomial, ZABI()
, distribution.
The ZIBI()
function defines the zero inflated binomial distribution, a two parameter distribution,
for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dZIBI
, pZIBI
, qZIBI
and rZIBI
define the density, distribution function, quantile function and random
generation for the zero inflated binomial, ZIBI()
, distribution.
ZABI(mu.link = "logit", sigma.link = "logit") dZABI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE) pZABI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZABI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZABI(n, bd = 1, mu = 0.5, sigma = 0.1) ZIBI(mu.link = "logit", sigma.link = "logit") dZIBI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE) pZIBI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZIBI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZIBI(n, bd = 1, mu = 0.5, sigma = 0.1)
ZABI(mu.link = "logit", sigma.link = "logit") dZABI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE) pZABI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZABI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZABI(n, bd = 1, mu = 0.5, sigma = 0.1) ZIBI(mu.link = "logit", sigma.link = "logit") dZIBI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE) pZIBI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZIBI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZIBI(n, bd = 1, mu = 0.5, sigma = 0.1)
mu.link |
Defines the |
sigma.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive probabilities |
sigma |
vector of positive probabilities |
bd |
vector of binomial denominators |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
The definition of the zero adjusted binomial distribution, ZABI
and the the zero inflated binomial distribution, ZIBI
, are given in p. 526 and p. 527 of of Rigby et al. (2019), respectively.
The functions ZABI
and ZIBI
return a gamlss.family
object which
can be used to fit a binomial distribution in the gamlss()
function.
The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures.
Mikis Stasinopoulos, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
ZABI() curve(dZABI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h") tN <- table(Ni <- rZABI(1000, mu=.2, sigma=.3, bd=10)) r <- barplot(tN, col='lightblue') ZIBI() curve(dZIBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h") tN <- table(Ni <- rZIBI(1000, mu=.2, sigma=.3, bd=10)) r <- barplot(tN, col='lightblue')
ZABI() curve(dZABI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h") tN <- table(Ni <- rZABI(1000, mu=.2, sigma=.3, bd=10)) r <- barplot(tN, col='lightblue') ZIBI() curve(dZIBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h") tN <- table(Ni <- rZIBI(1000, mu=.2, sigma=.3, bd=10)) r <- barplot(tN, col='lightblue')
The function ZAGA()
defines the zero adjusted Gamma distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The zero adjusted Gamma distribution is similar to the Gamma distribution
but allows zeros as y values. The extra parameter nu
models
the probabilities at zero.
The functions dZAGA
, pZAGA
, qZAGA
and rZAGA
define the density, distribution function,
quartile function and random
generation for the ZAGA
parameterization of the zero adjusted Gamma distribution.
plotZAGA
can be used to plot the distribution. meanZAGA
calculates the expected value of the response for a fitted model.
ZAGA(mu.link = "log", sigma.link = "log", nu.link = "logit") dZAGA(x, mu = 1, sigma = 1, nu = 0.1, log = FALSE) pZAGA(q, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qZAGA(p, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rZAGA(n, mu = 1, sigma = 1, nu = 0.1, ...) plotZAGA(mu = 5, sigma = 1, nu = 0.1, from = 0, to = 10, n = 101, main=NULL, ...) meanZAGA(obj)
ZAGA(mu.link = "log", sigma.link = "log", nu.link = "logit") dZAGA(x, mu = 1, sigma = 1, nu = 0.1, log = FALSE) pZAGA(q, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qZAGA(p, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rZAGA(n, mu = 1, sigma = 1, nu = 0.1, ...) plotZAGA(mu = 5, sigma = 1, nu = 0.1, from = 0, to = 10, n = 101, main=NULL, ...) meanZAGA(obj)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of probability at zero parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
from |
where to start plotting the distribution from |
to |
up to where to plot the distribution |
obj |
a fitted |
main |
for title in the plot |
... |
|
The Zero adjusted GA distribution is given as
if (y=0)
otherwise
for ,
,
and
.
and
.
The function ZAGA
returns a gamlss.family
object which can be used to fit a
zero adjusted Gamma distribution in the gamlss()
function.
Bob Rigby, Mikis Stasinopoulos and Almond Stocker
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
ZAGA()# gives information about the default links for the ZAGA distribution # plotting the function PPP <- par(mfrow=c(2,2)) plotZAGA(mu=1, sigma=.5, nu=.2, from=0,to=3) #curve(dZAGA(x,mu=1, sigma=.5, nu=.2), 0,3) # pdf curve(pZAGA(x,mu=1, sigma=.5, nu=.2), 0,3, ylim=c(0,1)) # cdf curve(qZAGA(x,mu=1, sigma=.5, nu=.2), 0,.99) # inverse cdf y<-rZAGA(100, mu=1, sigma=.5, nu=.2) # randomly generated values hist(y) par(PPP) # check that the positive part sums up to .8 (since nu=0.2) integrate(function(x) dZAGA(x,mu=1, sigma=.5, nu=.2), 0,Inf)
ZAGA()# gives information about the default links for the ZAGA distribution # plotting the function PPP <- par(mfrow=c(2,2)) plotZAGA(mu=1, sigma=.5, nu=.2, from=0,to=3) #curve(dZAGA(x,mu=1, sigma=.5, nu=.2), 0,3) # pdf curve(pZAGA(x,mu=1, sigma=.5, nu=.2), 0,3, ylim=c(0,1)) # cdf curve(qZAGA(x,mu=1, sigma=.5, nu=.2), 0,.99) # inverse cdf y<-rZAGA(100, mu=1, sigma=.5, nu=.2) # randomly generated values hist(y) par(PPP) # check that the positive part sums up to .8 (since nu=0.2) integrate(function(x) dZAGA(x,mu=1, sigma=.5, nu=.2), 0,Inf)
The function ZAIG()
defines the zero adjusted Inverse Gaussian distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The zero adjusted Inverse Gaussian distribution is similar to the Inverse Gaussian distribution
but allows zeros as y values. The extra parameter models
the probabilities at zero.
The functions dZAIG
, pZAIG
, qZAIG
and rZAIG
define the density, distribution function, quantile function and random
generation for the ZAIG
parameterization of the zero adjusted Inverse Gaussian distribution.
plotZAIG
can be used to plot the distribution. meanZAIG
calculates the expected value of the response for a fitted model.
ZAIG(mu.link = "log", sigma.link = "log", nu.link = "logit") dZAIG(x, mu = 1, sigma = 1, nu = 0.1, log = FALSE) pZAIG(q, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qZAIG(p, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rZAIG(n, mu = 1, sigma = 1, nu = 0.1, ...) plotZAIG(mu = 5, sigma = 1, nu = 0.1, from = 0, to = 10, n = 101, main = NULL,...) meanZAIG(obj)
ZAIG(mu.link = "log", sigma.link = "log", nu.link = "logit") dZAIG(x, mu = 1, sigma = 1, nu = 0.1, log = FALSE) pZAIG(q, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) qZAIG(p, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE) rZAIG(n, mu = 1, sigma = 1, nu = 0.1, ...) plotZAIG(mu = 5, sigma = 1, nu = 0.1, from = 0, to = 10, n = 101, main = NULL,...) meanZAIG(obj)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q
|
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of probability at zero parameter values |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
from |
where to start plotting the distribution from |
to |
up to where to plot the distribution |
obj |
a fitted |
main |
for title in the plot |
... |
|
The Zero adjusted IG distribution is given as
if (y=0)
otherwise
for ,
,
and
.
and
.
returns a gamlss.family
object which can be used to fit a zero adjusted inverse Gaussian distribution in the gamlss()
function.
Bob Rigby and Mikis Stasinopoulos
Heller, G. Stasinopoulos M and Rigby R.A. (2006) The zero-adjusted Inverse Gaussian distribution as a model for insurance claims. in Proceedings of the 21th International Workshop on Statistial Modelling, eds J. Hinde, J. Einbeck and J. Newell, pp 226-233, Galway, Ireland.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
ZAIG()# gives information about the default links for the ZAIG distribution # plotting the distribution plotZAIG( mu =10 , sigma=.5, nu = 0.1, from = 0, to=10, n = 101) # plotting the cdf plot(function(y) pZAIG(y, mu=10 ,sigma=.5, nu = 0.1 ), 0, 1) # plotting the inverse cdf plot(function(y) qZAIG(y, mu=10 ,sigma=.5, nu = 0.1 ), 0.001, .99) # generate random numbers dat <- rZAIG(100,mu=10,sigma=.5, nu=.1) # fit a model to the data # library(gamlss) # m1<-gamlss(dat~1,family=ZAIG) # meanZAIG(m1)[1]
ZAIG()# gives information about the default links for the ZAIG distribution # plotting the distribution plotZAIG( mu =10 , sigma=.5, nu = 0.1, from = 0, to=10, n = 101) # plotting the cdf plot(function(y) pZAIG(y, mu=10 ,sigma=.5, nu = 0.1 ), 0, 1) # plotting the inverse cdf plot(function(y) qZAIG(y, mu=10 ,sigma=.5, nu = 0.1 ), 0.001, .99) # generate random numbers dat <- rZAIG(100,mu=10,sigma=.5, nu=.1) # fit a model to the data # library(gamlss) # m1<-gamlss(dat~1,family=ZAIG) # meanZAIG(m1)[1]
The function ZINBI
defines the zero inflated negative binomial distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dZINBI
, pZINBI
,
qZINBI
and rZINBI
define the
density, distribution function, quantile function
and random generation for the zero inflated negative binomial, ZINBI()
, distribution.
The function ZANBI
defines the zero adjusted negative binomial distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dZANBI
, pZANBI
,
qZANBI
and rZANBI
define the
density, distribution function, quantile function
and random generation for the zero inflated negative binomial, ZANBI()
, distribution.
ZINBI(mu.link = "log", sigma.link = "log", nu.link = "logit") dZINBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZINBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZINBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) rZINBI(n, mu = 1, sigma = 1, nu = 0.3) ZANBI(mu.link = "log", sigma.link = "log", nu.link = "logit") dZANBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZANBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZANBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) rZANBI(n, mu = 1, sigma = 1, nu = 0.3)
ZINBI(mu.link = "log", sigma.link = "log", nu.link = "logit") dZINBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZINBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZINBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) rZINBI(n, mu = 1, sigma = 1, nu = 0.3) ZANBI(mu.link = "log", sigma.link = "log", nu.link = "logit") dZANBI(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE) pZANBI(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) qZANBI(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE) rZANBI(n, mu = 1, sigma = 1, nu = 0.3)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive despersion parameter |
nu |
vector of zero probability parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
The definition of the zero adjusted Negative Binomial type I distribution, ZANBI
and the the zero inflated Negative Binomial type I distribution, ZINBI
, are given in p. 512 and pp. 513-514 of of Rigby et al. (2019), respectively.
The functions ZINBI
and ZANBI
return a gamlss.family
object which can be used to fit a
zero inflated or zero adjusted Negative Binomial type I distribution respectively in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
ZINBI() ZANBI() # creating data and plotting them dat <- rZINBI(1000, mu=5, sigma=.5, nu=0.1) r <- barplot(table(dat), col='lightblue') dat1 <- rZANBI(1000, mu=5, sigma=.5, nu=0.1) r1 <- barplot(table(dat1), col='lightblue')
ZINBI() ZANBI() # creating data and plotting them dat <- rZINBI(1000, mu=5, sigma=.5, nu=0.1) r <- barplot(table(dat), col='lightblue') dat1 <- rZANBI(1000, mu=5, sigma=.5, nu=0.1) r1 <- barplot(table(dat1), col='lightblue')
The function ZAP
defines the zero adjusted Poisson distribution, a two parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dZAP
, pZAP
, qZAP
and rZAP
define the
density, distribution function, quantile function
and random generation for the inflated poisson, ZAP()
, distribution.
ZAP(mu.link = "log", sigma.link = "logit") dZAP(x, mu = 5, sigma = 0.1, log = FALSE) pZAP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZAP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZAP(n, mu = 5, sigma = 0.1)
ZAP(mu.link = "log", sigma.link = "logit") dZAP(x, mu = 5, sigma = 0.1, log = FALSE) pZAP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZAP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZAP(n, mu = 5, sigma = 0.1)
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Details about the zero adjusted Poison, ZAP
can be found pp 494-496 of Rigby et al. (2019).
The function ZAP
returns a gamlss.family
object which can be used to fit a zero inflated poisson distribution in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/)..
gamlss.family
, PO
, ZIP
, ZIP2
, ZALG
ZAP() # creating data and plotting them dat<-rZAP(1000, mu=5, sigma=.1) r <- barplot(table(dat), col='lightblue')
ZAP() # creating data and plotting them dat<-rZAP(1000, mu=5, sigma=.1) r <- barplot(table(dat), col='lightblue')
The function ZIP
defines the zero inflated Poisson distribution, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The functions dZIP
, pZIP
, qZIP
and rZIP
define the density, distribution function, quantile function
and random generation for the inflated poisson, ZIP()
, distribution.
ZIP(mu.link = "log", sigma.link = "logit") dZIP(x, mu = 5, sigma = 0.1, log = FALSE) pZIP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZIP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZIP(n, mu = 5, sigma = 0.1)
ZIP(mu.link = "log", sigma.link = "logit") dZIP(x, mu = 5, sigma = 0.1, log = FALSE) pZIP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZIP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZIP(n, mu = 5, sigma = 0.1)
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Let with probability
and
with probability
the Y has
a Zero inflated Poisson Distribution given by
if (y=0)
if (y>0)
for see pp 498-500 of Rigby et al. (2019). The expected values in this parametrization is
.
returns a gamlss.family
object which can be used to fit a zero inflated poisson distribution in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Lambert, D. (1992), Zero-inflated Poisson Regression with an application to defects in Manufacturing, Technometrics, 34, pp 1-14.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
ZIP()# gives information about the default links for the normal distribution # creating data and plotting them dat<-rZIP(1000, mu=5, sigma=.1) r <- barplot(table(dat), col='lightblue') # library(gamlss) # fit the distribution # mod1<-gamlss(dat~1, family=ZIP)# fits a constant for mu and sigma # fitted(mod1)[1] # fitted(mod1,"sigma")[1]
ZIP()# gives information about the default links for the normal distribution # creating data and plotting them dat<-rZIP(1000, mu=5, sigma=.1) r <- barplot(table(dat), col='lightblue') # library(gamlss) # fit the distribution # mod1<-gamlss(dat~1, family=ZIP)# fits a constant for mu and sigma # fitted(mod1)[1] # fitted(mod1,"sigma")[1]
The function ZIP2
defines the zero inflated Poisson type 2 distribution, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The functions dZIP2
, pZIP2
, qZIP2
and rZIP2
define the density, distribution function, quantile function
and random generation for the inflated poisson, ZIP2()
, distribution.
The ZIP2 is a different parameterization of the ZIP distribution. In the ZIP2 the mu
is the mean of the distribution.
ZIP2(mu.link = "log", sigma.link = "logit") dZIP2(x, mu = 5, sigma = 0.1, log = FALSE) pZIP2(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZIP2(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZIP2(n, mu = 5, sigma = 0.1)
ZIP2(mu.link = "log", sigma.link = "logit") dZIP2(x, mu = 5, sigma = 0.1, log = FALSE) pZIP2(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZIP2(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZIP2(n, mu = 5, sigma = 0.1)
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
The parametrization used for this version of the zero inflated Poison distribution ZIP2
can be found in pp 500-501 of Rigby et al. (2019). Note that the mean of the distribution in this parameterization is .
returns a gamlss.family
object which can be used to fit a zero inflated poisson distribution in the gamlss()
function.
Bob Rigby, Gillian Heller and Mikis Stasinopoulos
Lambert, D. (1992), Zero-inflated Poisson Regression with an application to defects in Manufacturing, Technometrics, 34, pp 1-14.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
ZIP2()# gives information about the default links for the normal distribution # creating data and plotting them dat<-rZIP2(1000, mu=5, sigma=.1) r <- barplot(table(dat), col='lightblue') # fit the disteibution # library(gamlss) # mod1<-gamlss(dat~1, family=ZIP2)# fits a constant for mu and sigma # fitted(mod1)[1] # fitted(mod1,"sigma")[1]
ZIP2()# gives information about the default links for the normal distribution # creating data and plotting them dat<-rZIP2(1000, mu=5, sigma=.1) r <- barplot(table(dat), col='lightblue') # fit the disteibution # library(gamlss) # mod1<-gamlss(dat~1, family=ZIP2)# fits a constant for mu and sigma # fitted(mod1)[1] # fitted(mod1,"sigma")[1]
This function ZIPF()
defines the zipf distribution, Johnson et. al., (2005), sections 11.2.20, p 527-528. The zipf distribution is an one parameter distribution with long tails (a discete version of the Pareto distrbution). The function ZIPF()
creates a gamlss.family
object to be used in GAMLSS fitting. The functions dZIPF
, pZIPF
, qZIPF
and rZIPF
define the density, distribution function, quantile function and random generation for the zipf, ZIPF()
, distribution. The function zetaP()
defines the zeta function and it is based on the zeta function defined on the VGAM
package of Thomas Yee, see Yee (2017).
The distribution zipf is defined on , the zero adjusted zipf permits values on
. The function
ZAZIPF()
defines the zero adjusted zipf distribution. The function ZAZIPF()
creates a gamlss.family
object to be used in GAMLSS fitting. The functions dZAZIPF
, pZAZIPF
, qZAZIPF
and rZAZIPF
define the density, distribution function, quantile function and random generation for the zero adjusted zipf, ZAZIPF()
, distribution.
ZIPF(mu.link = "log") dZIPF(x, mu = 1, log = FALSE) pZIPF(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qZIPF(p, mu = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZIPF(n, mu = 1, max.value = 10000) zetaP(x) ZAZIPF(mu.link = "log", sigma.link = "logit") dZAZIPF(x, mu = 0.5, sigma = 0.1, log = FALSE) pZAZIPF(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZAZIPF(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZAZIPF(n, mu = 0.5, sigma = 0.1, max.value = 10000)
ZIPF(mu.link = "log") dZIPF(x, mu = 1, log = FALSE) pZIPF(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qZIPF(p, mu = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZIPF(n, mu = 1, max.value = 10000) zetaP(x) ZAZIPF(mu.link = "log", sigma.link = "logit") dZAZIPF(x, mu = 0.5, sigma = 0.1, log = FALSE) pZAZIPF(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZAZIPF(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rZAZIPF(n, mu = 0.5, sigma = 0.1, max.value = 10000)
mu.link |
the link function for the parameter |
x , q
|
vectors of (non-negative integer) quantiles |
p |
vector of probabilities |
mu |
vector of positive parameter |
log , log.p
|
logical; if |
lower.tail |
logical; if |
n |
number of random values to return |
max.value |
a constant, set to the default value of 10000, It is used in the |
sigma.link |
the link function for the parameter |
sigma |
a vector of probabilities of zero |
The probability density for the zipf distribution, ZIPF
, is:
for ,
and where
is the (Reimann) zeta function.
The distribution has mean and variance
, see pp 479-480 of Rigby et al. (2019)
For more details about the zero-adjusted Zipf distributions, ZAZIPF
, see see pp 496-498 of Rigby et al. (2019).
The function ZIPF()
returns a gamlss.family
object which can be used to fit a zipf distribution in the gamlss()
function.
Because the zipf distrbution has very long tails the max.value
in the q
and r
, may need to increase.
Mikis Stasinopoulos and Bob Rigby
N. L. Johnson, A. W. Kemp, and S. Kotz. (2005) Univariate Discrete Distributions. Wiley, New York, 3rd edition.
Thomas W. Yee (2017). VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-3. https://CRAN.R-project.org/package=VGAM
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
# ZIPF par(mfrow=c(2,2)) y<-seq(1,20,1) plot(y, dZIPF(y), type="h") q <- seq(1, 20, 1) plot(q, pZIPF(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qZIPF(p), type="s") dat <- rZIPF(100) hist(dat) # ZAZIPF y<-seq(0,20,1) plot(y, dZAZIPF(y, mu=.9, sigma=.1), type="h") q <- seq(1, 20, 1) plot(q, pZAZIPF(q, mu=.9, sigma=.1), type="h") p<-seq(0.0001,0.999,0.05) plot(p, qZAZIPF(p, mu=.9, sigma=.1), type="s") dat <- rZAZIPF(100, mu=.9, sigma=.1) hist(dat)
# ZIPF par(mfrow=c(2,2)) y<-seq(1,20,1) plot(y, dZIPF(y), type="h") q <- seq(1, 20, 1) plot(q, pZIPF(q), type="h") p<-seq(0.0001,0.999,0.05) plot(p , qZIPF(p), type="s") dat <- rZIPF(100) hist(dat) # ZAZIPF y<-seq(0,20,1) plot(y, dZAZIPF(y, mu=.9, sigma=.1), type="h") q <- seq(1, 20, 1) plot(q, pZAZIPF(q, mu=.9, sigma=.1), type="h") p<-seq(0.0001,0.999,0.05) plot(p, qZAZIPF(p, mu=.9, sigma=.1), type="s") dat <- rZAZIPF(100, mu=.9, sigma=.1) hist(dat)