Package: gamlss2 (via r-universe)

September 17, 2024

Title GAMLSS Infrastructure for Flexible Distributional Regression
Version 0.1-0
Date 2024-09-15

Description Next generation infrastructure for generalized additive
models for location, scale, and shape (GAMLSS) and
distributional regression more generally. The package provides
a fresh reimplementaton of the classic 'gamlss' package while
being more modular and facilitating the creation of advanced
terms and models.

License GPL-2 | GPL-3

URL https://gamlss-dev.github.io/gamlss2/

BugReports https://github.com/gamlss-dev/gamlss2/issues

Depends R (>=4.1.0), gamlss.dist, mgcv

Imports parallel, Formula

Suggests gamlss, gamlss.data, colorspace, knitr, scoringRules,
partykit, Matrix, nnet, lattice, rpart, distributions3, nlme

LazyLoad yes

VignetteBuilder knitr

Repository https://gamlss-dev.r-universe.dev

RemoteUrl https://github.com/gamlss-dev/gamlss2
RemoteRef HEAD
RemoteSha {8c26836967a5892a2280f9b9de16709648680f5

Contents

gamlss2-package L.
fake formula e
find_family
gamlss2o e e
gamlss2.family L

https://gamlss-dev.github.io/gamlss2/
https://github.com/gamlss-dev/gamlss2/issues

2 gamlss2-package

gamlss2_control L e e e e 13
HarzTraffic e 14
PO . 16
plotgamlss2 L 18
predict.gamlss2 e e e e e e 19
prodist.gamlss2 e e e e 21
quantile.gamlss2 L e 23
T€ v e e e e e e e e e e e e e e e e 25
TESPONSE_MNAME . .+ & v v v v v e v e e e e e e e e e e e e e e e e e e 27
RS . e 28
Rsq . . o e 30
SOftplus e 32
special_terms L e e e e e e e e 34
SEPWISE . . . o o e e 39

Index 43

gamlss2-package GAMLSS Modeling with Advanced Flexible Infrastructures
Description

Next generation infrastructure for generalized additive models for location, scale, and shape (GAMLSS)
and distributional regression more generally. The package provides a fresh reimplementaton of the
classic gamlss’ package while being more modular and facilitating the creation of advanced terms
and models.

Details

The primary purpose of this package is to facilitate the creation of advanced infrastructures designed
to enhance the Generalized Additive Models for Location Scale and Shape (GAMLSS, Rigby and
Stasinopoulos 2005) modeling framework. Notably, the gamlss2 package represents a significant
overhaul of its predecessor, gamlss, with a key emphasis on improving estimation speed and in-
corporating more adaptable infrastructures. These enhancements enable the seamless integration
of various algorithms into GAMLSS, including gradient boosting, Bayesian estimation, regression
trees, and forests, fostering a more versatile and powerful modeling environment.

Moreover, the package expands its compatibility by supporting all model terms from the base R
mgcv package. Additionally, the gamlss2 package introduces the capability to accommodate more
than four parameter families. Essentially, this means that users can now specify any type of model
using these new infrastructures, making the package highly flexible and accommodating to a wide
range of modeling requirements.

Index: This package was not yet installed at build time.

fake_formula

Author(s)

Mikis Stasinopoulos [aut, cph] (<https://orcid.org/0000-0003-2407-5704>), Robert Rigby [aut] (<https://orcid.org/0000-

0003-3853-1707>), Nikolaus Umlauf [aut, cre] (<https://orcid.org/0000-0003-2160-9803>), Achim
Zeileis [ctb] (<https://orcid.org/0000-0003-0918-3766>), Reto Stauffer [aut] (<https://orcid.org/0000-
0002-3798-5507>)

Maintainer: Nikolaus Umlauf <Nikolaus.Umlauf @uibk.ac.at>

References

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale and Shape
(with Discussion).” Journal of the Royal Statistical Society, Series C (Applied Statistics), 54, 507—
554. doi:10.1111/j.14679876.2005.00510.x

Rigby RA, Stasinopoulos DM, Heller GZ, De Bastiani F (2019). Distributions for Modeling Loca-
tion, Scale, and Shape: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/9780429298547

Stasinopoulos DM, Rigby RA (2007). “Generalized Additive Models for Location Scale and Shape
(GAMLSS) in R.” Journal of Statistical Software, 23(7), 1-46. doi:10.18637/jss.v023.107

Stasinopoulos DM, Rigby RA, Heller GZ, Voudouris V, De Bastiani F (2017). Flexible Regression
and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973

See Also

gamlss2, fake_formula

fake_formula Extended Processing of "Fake" Formulas

Description

Create a "fake" formula from a formula, a Formula, or a 1ist of formulas. The function extracts
all necessary variables (transformation of variables), to build a model. frame. The function also
extracts all special model terms within the formulas, the information can be used to setup any
special model term specification list.

Usage

fake_formula(formula, specials = NULL,
nospecials = FALSE, onlyspecials = FALSE)

Arguments
formula A formula, Formula, ora list of formulas.
specials Character, vector of names of special functions in the formula, see terms. formula.
nospecials Logical, should variables of special model terms be part of the "fake formula"?

onlyspecials Logical, should only the special model terms be returned?

https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1201/9780429298547
https://doi.org/10.18637/jss.v023.i07
https://doi.org/10.1201/b21973

Value

Depending on the input formula, the function returns a formula or Formula
TRUE a vector or list of special model term names is returned.

See Also

gamlss?2

Examples

basic formula
f<-y~x1+ x2+ log(x3)
ff <- fake_formula(f)
print(ff)

including special model terms
f<-y~x1+ s(x2) + x3 + te(log(x3), x4)
ff <- fake_formula(f)

print(ff)

multiple parts on the right-hand side
f<-y~x1+s(x2) + x3 + te(log(x3), x4) | x2 + sqrt(x5)
ff <- fake_formula(f)

print(ff)

collapse all formula parts
print(formula(ff, collapse = TRUE))
print(formula(ff, collapse = TRUE, update = TRUE))

list of formulas
f <- list(
y ~ x1 + s(x2) + x3 + te(log(x3), x4),

~ x2 + sqrt(x5),
~ z2 + x1 + exp(x3)

)

ff <- fake_formula(f)

print(ff)

extract separate parts on the right-hand side
formula(ff, rhs = 1)
formula(ff, rhs = 2)
formula(ff, rhs = 3)

formula with multiple responses and multiple parts

f <=yl | y2 | y3~x1+ s(x2) + x3 + te(log(x3), x4) | x2 + ti(x5)
ff <- fake_formula(f)

print(ff)

list of formulas with multiple responses
f <- list(
yl ~ x1 + s(x2) + x3 + te(log(x3), x4),
y2 ~ x2 + sqrt(x5),

fake formula

. If onlyspecials =

find_family 5

y3 ~ z2 + x1 + exp(x3) + s(x10)

)
ff <- fake_formula(f)

extract only without special terms
ff <- fake_formula(f, nospecials = TRUE)
print(ff)

extract only special terms
ff <- fake_formula(f, onlyspecials = TRUE)
print(ff)

find_family Find and Fit GAMLSS Families

Description

These functions provide useful infrastructures for finding suitable GAMLSS families for a response
variable.

Usage

List of available families from gamlss.dist package.
available_families(type = c("continuous”, "discrete"), families = NULL)

Find suitable response distribution.
find_family(y, families = NULL, k = 2, verbose = TRUE, ...)

Fit distribution parameters.

fit_family(y, family = NO, plot = TRUE, ...)
Arguments
type Character, is the reponse continuous or discrete?
families Character, the names of the family objects of the gamlss.dist package that should
be returned.
y The reponse vector or matrix.
k Numeric, the penalty factor that should be used for the GAIC.
verbose Logical, should runtime information be printed?
family A famnily object that should be used for estimation, see also gamlss2.family.
plot Logical, should a plot of the fitted density be provided?

Further arguments to be passed to gamlss2 when using find_family(), or ar-
guments legend = TRUE/FALSE, pos = "topright” (see also function legend),
main, x1ab and ylab when argument plot = TRUE using function fit_family().

6 gamlss2

Details

The function find_family () employs gamlss2 to estimate intercept-only models for each specified
family object in the families argument. Note that model estimation occurs within a try block
with warnings suppressed. Additionally, the function calculates the GAIC for each family whenever
feasible and returns the sorted values in descending order.

Function fit_family() fits a single intercept-only model using the specified family and creates a
plot of the fitted density.

Value

Function find_family() returns a vector of GAIC values for the different fitted families. Function
fit_family() returns the fitted intercept-only model.

See Also

gamlss2.

Examples

Not run: ## load data
data("rent”, package = "gamlss.data")

find a suitable response to the response
ic <= find_family(rent$R)
print(ic)

fit parameters using the BCCG family
fit_family(rent$R, family = BCCG)

count data
data("polio”, package = "gamlss.data")

search best count model
ic <- find_family(polio, k = 0,

families = available_families(type = "discrete"))
print(ic)

fit parameters using the ZASICHEL family
fit_family(polio, family = ZASICHEL)

End(Not run)

gamlss?2 Generalized Additive Models for Location Scale and Shape

gamlss2

Description

Estimation of generalized additive models for location scale and shape (GAMLSS). The model
fitting function gamlss2 () provides flexible infrastructures to estimate the parameters of a response
distribution. The number of distributional parameters is not fixed, see gamlss2.family. Moreover,
gamlss2 () supports all smooth term constructors from the mgev package in addition to the classical
model terms as provided by gamlss and gamlss. add.

Usage

gamlss2(x,

)

S3 method for class 'formula'

gamlss2(formula, data, family = NO,
subset, na.action, weights, offset, start = NULL,
control = gamlss2_control(...), ...)

S3 method for class 'list'

gamlss2(x,

Arguments

formula

data

family

subset

na.action

weights

offset

start

control

.2

A GAM-type formula or Formula. All smooth terms of the mgev package are
supported, see also formula.gam.

For gamlss.list() x is alist of formulas.

A data frame or list or environment containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which gamlss?2 is called.

A gamlss.family or gamlss2.family object used to define distribution and
the link functions of the parameters.

An optional vector specifying a subset of observations to be used in the fitting
process.

NA processing for setting up the model . frame.

An optional vector of prior weights to be used in the fitting process. Should be
NULL or a numeric vector.

This can be used to specify an a priori known components to be included in
the linear predictors during fitting. Please note that if only a single numeric
vector is provided, the offset will be assigned to the first specified parameter
of the distribution. In the case of multiple offsets, a data frame or list must be
supplied. Each offset is assigned in the same order as the parameters of the
distribution specified in the family object.

Starting values for estimation algorithms.
A list of control arguments, see gamlss2_control.

Arguments passed to gamlss2_control.

8 gamlss2

Details
The model fitting function gamlss2 () provides flexible infrastructures for the estimation of GAMLSS.
* Distributional models are specified using family objects, either from the gamlss.dist package
or using gamlss2.family objects.

* Estimation is carried out through a Newton-Raphson/Fisher scoring algorithm, see function
RS. The estimation algorithms can also be exchanged using gamlss2_control. Additionally,
if an optimizer is specified by the family object, this optimizer function will be employed
for estimation.

* The return value is determined by the object returned from the optimizer function, typically
an object of class "gamlss2". Default methods and extractor functions are available for this
class. Nevertheless, users have the flexibility to supply their own optimizer function, along
with user-specific methods tailored for the returned object.

Value

The return value is determined by the object returned from the optimizer function. By default,
the optimization is performed using the RS optimizer function (see gamlss2_control), yielding an
object of class "gamlss2". Default methods and extractor functions are available for this class.

References

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale and Shape
(with Discussion).” Journal of the Royal Statistical Society, Series C (Applied Statistics), 54, 507—
554. doi:10.1111/5.14679876.2005.00510.x

Rigby RA, Stasinopoulos DM, Heller GZ, De Bastiani F (2019). Distributions for Modeling Loca-
tion, Scale, and Shape: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/9780429298547

Stasinopoulos DM, Rigby RA (2007). “Generalized Additive Models for Location Scale and Shape
(GAMLSS) in R.” Journal of Statistical Software, 23(7), 1-46. doi:10.18637/jss.v023.i07

Stasinopoulos DM, Rigby RA, Heller GZ, Voudouris V, De Bastiani F (2017). Flexible Regression
and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973

See Also

RS, gamlss2_control, gamlss2.family

Examples

load the abdominal circumference data
data("abdom”, package = "gamlss.data")

specify the model Formula
f<-y~s(x) | s(x) | s(x) | s(x)

estimate model
b <- gamlss2(f, data = abdom, family = BCT)

model summary
summary (b)

https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1201/9780429298547
https://doi.org/10.18637/jss.v023.i07
https://doi.org/10.1201/b21973

gamlss2.family 9

plot estimated effects
plot(b, which = "effects"”)

plot diagnostics
plot(b, which = "resid")

predict parameters
par <- predict(b)

predict quantiles
pq <- sapply(c(@.05, 0.5, 0.95), function(q) family(b)$q(q, par))

visualize
plot(y ~ x, data = abdom, pch = 19,
col = rgh(0.1, 0.1, 0.1, alpha = 0.3))
matplot(abdom$x, pg, type = "1", 1lwd = 2,
1ty = 1, col = 4, add = TRUE)

use of starting values
m <- gamlss2(f, data = abdom, family = BCT,

start = c(mu = 200, sigma = 0.1, nu = @, tau = 10))
fix some parameters
m <- gamlss2(f, data = abdom, family = BCT,

start = c(mu = 200, sigma = 0.1, nu = @, tau = 10),

fixed = c(nu = TRUE, tau = TRUE))

estimated coefficients (intercepts)
coef(m)

starting values using full predictors
m <- gamlss2(f, data = abdom, family = BCT,
start = fitted(m))

same with
m <- gamlss2(f, data = abdom, family = BCT,

start = m)
gamlss2.family Family Objects in gamlss2
Description

Family objects within the package gamlss2 are used to specify the information required to use a
model fitting function. This includes details such as parameter names, corresponding link functions,
the density function, log-likelihood function and derivatives of the log-likelihood with respect to
the predictors. In addition, family objects are used in the calculation of post-modeling statistics,
such as residual diagnostics and random number generation. An overview can be found in the
accompanying details and examples.

10 gamlss2.family

Details
The following lists the minimum requirements on a gamlss2 family object to be used with gamlss2:

* The family object is expected to return a 1ist of class "gamlss2.family".
* The object must contain the family name as a character string.

* The object must contain the names of the parameters as a character string, as well as the
corresponding link functions as character string.

* The family object must contain a $d() function to evaluate the (log-)density.

Furthermore, it is assumed that the density function in a family object has the following arguments:
d(y, par, log =FALSE, ...)

where argument y is the response (possibly a matrix) and par is a named list holding the evaluated
parameters of the distribution, e.g., using a normal distribution par has two elements, one for the
mean par$mu and one for the standard deviation par$sigma. The dots argument is for passing
special internally used objects, depending on the type of model this feature is usually not needed.

Optionally, the family object holds derivative functions evaluating derivatives of the log-likelihood
w.r.t. the predictors (or expectations of derivatives). For each parameter, these functions must have
the following arguments:

function(y, par, ...)
for computing the first derivative of the log-likelihood w.r.t. a predictor and
function(y, par, ...)

for computing the _negative_ second derivatives. Within the family object these functions are or-
ganized in a named list, see the examples below. If these functions are not specified, all derivatives
will be approximated numerically. Note that also cross derivatives can be implemented, e.g., when
using the CG algorithm for fitting a GAMLSS.

In addition, for the cumulative distribution function (p(y, par, ...)), for the quantile function
(q(y, par, ...))or for creating random numbers (r (n, par, ...)) the same structure is assumed.

Using function gamlss2 the family objects may also specify the optimizer()er function that
should be used with this family.

See Also

gamlss?2

Examples

Not run: ## new family object for the normal distribution
Normal <- function(...) {

fam <- list(
"family"” = "Normal”,
"names” = c("mu", "sigma"),
"links" = c("mu" = "identity", "sigma" = "log"),
"score” = list(
"mu” = function(y, par, ...) {

(y - par$mu) / (par$sigma”2)
}’

gamlss2.family

"sigma” = function(y, par, ...) {
-1 + (y - par$mu)*2 / (par$sigma*2)
}
),
"hess"” = list(
"mu” = function(y, par, ...) {
1 / (par$sigma”2)
+
"sigma" = function(y, par, ...) {
rep(2, length(y))
h
"mu.sigma” = function(y, par, ...) {
rep(@, length(y))
}
),
"loglik” = function(y, par, ...) {
sum(dnorm(y, parmu, parsigma, log = TRUE))
1
"mu" = function(par, ...) {
par$mu
1

"d" = function(y, par, log = FALSE) {
dnorm(y, mean = par$mu, sd = par$sigma, log = log)

1,
"p" = function(y, par, ...) {
pnorm(y, mean = par$mu, sd = par$sigma, ...)
1,
"r" = function(n, par) {
rnorm(n, mean = par$mu, sd = par$sigma)
1,

nn

q" = function(p, par) {
gnorm(p, mean = par$mu, sd = par$sigma)

1,
"initialize" = list(
"mu” = function(y, ...) { (y + mean(y)) / 2 },
"sigma” = function(y, ...) { rep(sd(y), length(y)) %}
),
"mean” = function(par) par$mu,
"variance"” = function(par) par$sigma*2,
"valid.response” = function(x) {

if(is.factor(x) | is.character(x))
stop(”the response should be numeric!")
return(TRUE)
}
)

class(fam) <- "gamlss2.family"”

return(fam)

}

load the abdominal circumference data
data("abdom”, package = "gamlss.data")

12

specify the model Formula
f<-y~sx)| sx)

estimate model

b <- gamlss2(f, data = abdom, family = Normal)

plot estimated effects
plot(b, which = "effects"”)

plot diagnostics
plot(b, which = "resid")

predict parameters
par <- predict(b)

predict quantiles

pq <- sapply(c(@.05, 0.5, 0.95), function(q) family(b)$q(q, par))

visualize
plot(y ~ x, data = abdom, pch = 19,

col = rgh(0.1, 0.1, 0.1, alpha = 0.3))
matplot(abdom$x, pqg, type = "1", lwd = 2,

1ty = 1, col = 4, add = TRUE)

another example using only the density
function, all derivatives are approximated
in this case; for residual diagnostics,
the $p() and $q() function is needed, too.

Gamma <- function(...) {

fam <- list(
"names” = c("mu”, "sigma"),
"links” = c("mu" = "log", "sigma" = "log"),
"d" = function(y, par, log = FALSE, ...) {
shape <- par$sigma
scale <- parmu/parsigma
dgamma(y, shape = shape, scale = scale, log

}!

shape <- par$sigma
scale <- parmu/parsigma
pgamma(y, shape = shape, scale

p" = function(y, par, lower.tail = TRUE, log.

scale,

lower.tail = lower.tail, log.p = log.p)

}!

"q" = function(p, par, lower.tail
shape <- par$sigma
scale <- parmu/parsigma

qgamma(p, shape = shape, scale

lower.tail = lower.tail, log.

3
)

class(fam) <- "gamlss2.family"”

p

TRUE, log.

scale,
= log.p)

log)

FALSE) {

FALSE) {

gamlss2.family

gamlss2_control 13

return(fam)

}

example using the Munich rent data
data("rent”, package = "gamlss.data")

model formula
f <- R~ ti(F1) + ti(A) + ti(F1, A, bs = "ps") |
ti(F1) + ti(A) + ti(F1l, A, bs = "ps")

estimate model
b <- gamlss2(f, data = rent, family = Gamma)

visualize estimated effects
plot(b, which = "effects")

diagnostics, needs the $p() and $q() function!
plot(b, which = "resid")

End(Not run)

gamlss2_control Control Parameters

Description

Various parameters that control fitting of GAMLSS using gamlss2.

Usage
gamlss2_control(optimizer = RS, trace = TRUE,
flush = TRUE, light = FALSE, expand = TRUE,
model = TRUE, x = TRUE, y = TRUE,
fixed = FALSE, ...)
Arguments
optimizer Function, the optimizer function that should be used for fitting.
trace Logical, should information be printed while the algorithm is running?
flush Logical, use flush.console for displaying the current output in the console.
light Logical, if set to light = TRUE, no model frame, response, model matrix and
other design matrices will be part of the return value.
expand Logical, if fewer formulas are supplied than there are parameters of the distri-
bution, should formulas with intercept only formulas be added?
model Logical, should the model frame be included as component of the returned ob-

ject.

14 HarzTraffic

X Logical, indicating whether the model matrix should be included as component
of the returned object.

y Logical, should the response be included as component of the returned object.

fixed Logical, a named vector of parameters that should be fixed during estimation.

See the examples for gamlss?2.

Further control parameters to be part of the return value, e.g., used within opti-
mizer function RS.
Details
The control parameters in gamlss2_control can also be extended, e.g., if another optimization
function is used, newly specified control parameters are automatically passed on to this function.
Value

A list with the arguments specified.

See Also

RS, gamlss2

Examples

Not run: ## load the abdominal circumference data
data("abdom”, package = "gamlss.data")

specify the model Formula
f<-y~s(x) | s

estimate model with different step length
control in the RS algorithm
b1 <- gamlss2(f, data = abdom, family = BCT, step = 1)

b2 <- gamlss2(f, data = abdom, family = BCT, step = 0.9)
End(Not run)
HarzTraffic Traffic Counts at Sonnenberg in the Harz Region

Description
This dataset contains daily traffic counts close to Sonnenberg, located in the Harz region in Ger-
many. It covers a period of nearly three years, from 2021-01-01 to 2023-11-30.

Usage

data("HarzTraffic”, package = "gamlss2")

HarzTratfic 15

Format

A data frame containing 1057 observations on 16 variables.

date Date, the date of the record.

yday Integer, the day of the year.

bikes Integer, the number of motorcycles on that day.
cars Integer, the number of cars on that day.

trucks Integer, the number of trucks on that day.

others Integer, the number of other vehicles on that day.
tempmin Numeric, minimum temperature in °C'.
tempmax Numeric, maximum temperature in °C.

temp Numeric, mean temperature in °C.

humidity Numeric, mean relative humidity in percent.
tempdew Numeric, average dewpoint temperature in °C'.
cloudiness Numeric, average cloud cover in percent.
rain Numeric, amount of precipitation in mm (snow and rain).
sunshine Numeric, sunshine duration in minutes.

wind Numeric, mean wind speed in m/s.

windmax Numeric, maximum wind speed in m/s.

Source

Weather Data:

Data Source: Deutscher Wetterdienst (DWD), Climate Data Center (CDC).
Licence: CCBY 4.0

URL: https://opendata.dwd.de/climate_environment/CDC/

Station: Wernigerode (5490; Sachsen-Anhalt)

Position: 10.7686/51.8454/233 (lon, lat, alt, EPSG 4326)

Traffic Data:

Data Source: Bundesanstalt fiir Strassenwesen (BASt)
Licence: CC BY 4.0

URL: https://www.bast.de, https://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/
Verkehrszaehlung.html

https://opendata.dwd.de/climate_environment/CDC/
https://www.bast.de
https://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Verkehrszaehlung.html
https://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Verkehrszaehlung.html

16 pb

Examples

seasonal variation of motorcycle counts at Sonnenberg/Harz
data("HarzTraffic"”, package = "gamlss2")
plot(bikes ~ yday, data = HarzTraffic)

count distribution
barplot(table(HarzTraffic$bikes))

negative binomial seasonal model using cyclic splines
m <- gamlss2(bikes ~ s(yday, bs = "cc") | s(yday, bs = "cc"),
data = HarzTraffic, family = NBI)

visualize effects
plot(m)

residual diagnostics
plot(m, which = "resid")

fitted parameters for each day of the year
nd <- data.frame(yday = 1:365)
par <- predict(m, newdata = nd)

corresponding quantiles
p <- sapply(c(@.05, @.5, 0.95), function(q) family(m)$q(q, par))

visualization
plot(bikes ~ yday, data = HarzTraffic, pch = 19, col = gray(@.1, alpha = 0.3))
matplot(nd$yday, p, type = "1", 1ty = c(2, 1, 2), lwd = 2, col = 4, add = TRUE)

pb P-Splines for GAMLSS

Description

Estimation of P-splines using an efficient local maximum likelihood approach to automatically
select the smoothing parameter. According to the inventors of P-splines, pb stands for "penalized
beta" splines or "Paul and Brian".

Usage
pb(x, k =20, ...)

Arguments
X The variable that should be used for estimation.
k The dimension of the B-spline basis to represent the smooth term.

Further arguments passed to function s.

pb 17

Details

Function pb() is an internal wrapper function that calls s to set up a smooth specification object
that can be used for model fitting with gamlss2. Using pb(), an efficient local maximum likelihood
approach is used to estimate the smoothing parameter. See the reference for details.

Value

The function returns a smooth specification object of class "ps. smooth. spec”, see also smooth.construct.ps. smooth. spe

References

Eilers PHC, Marx BD (1996). “Flexible Smoothing with B-Splines and Penalties.” Statistical
Science, 11(2), 89-121. doi:10.1214/ss/1038425655

Rigby RA, Stasinopoulos DM (2014). “Automatic Smoothing Parameter Selection in GAMLSS
with an Application to Centile Estimation.” Statistical Methods in Medical Research, 23(4), 318—
332. doi:10.1177/0962280212473302

See Also

gamlss2, smooth.construct.ps.smooth. spec

Examples

load head circumference data
data("dbhh”, package = "gamlss.data")

specify the model Formula
f <- head ~ pb(age) | pb(age) | pb(age) | pb(age)

estimate model
b <- gamlss2(f, data = dbhh, family = BCT)

visualize estimated effects
plot(b, which = "effects")

plot diagnostics
plot(b, which = "resid")

predict parameters
par <- predict(b)

predict quantiles
pg <- sapply(c(0.05, 0.5, 0.95), function(q) family(b)$q(q, par))

plot
plot(head ~ age, data = dbhh, pch = 19,
col = rgh(0.1, 0.1, 0.1, alpha = 0.3))
matplot(dbhh$age, pq, type = "1",
1ty = 1, col = 4, add = TRUE)

https://doi.org/10.1214/ss/1038425655
https://doi.org/10.1177/0962280212473302

18 plot.gamlss2

plot.gamlss?2 Plotting GAMLSS

Description

Plotting methods for objects of class "gamlss2"” and "gamlss2.1list", which can be used for effect
plots of model terms or residual plots. Note that effect plots of model terms with more than two
covariates are not supported, for this purpose use the predict method.

Usage

S3 method for class 'gamlss2'
plot(x, parameter = NULL,
which = "effects"”, terms = NULL,
scale = TRUE, spar = TRUE, ...)

S3 method for class 'gamlss2.list'
plot(x, parameter = NULL, which = "effects”,
terms = NULL, spar = TRUE, legend = TRUE, ...)

Arguments

X An object of class "gamlss2" or "gamlss2.list"”, which can be created by
using the c() method combining "gamlss2" objects. See th examples.

parameter Character or integer. For which parameter/model/what should the plots be cre-
ated? Note that instead of argument parameter plots can also be specified pass-
ing argument model and whatto....

which Character or integer, selects the type of plot: "effects” produces effect plots of
(special) model terms, "hist-resid"” shows a histogram of residuals, "qq-resid”
shows a quantile-quantile plot of residuals, "scatter-resid” shows a scatter
plot of residuals with fitted values for the distribution mean (or median, if avail-
able in the family object).

terms Character or integer. For which model term should the plot(s) be created?

scale If set to 1, effect plots all have the same scale on the y-axis. If set to @ each
effect plot has its own scale for the y-axis.

spar Should graphical parameters be set?

legend Should a legend be added using multiple model plots?

Arguments such as 1wd, 1ty, col, legend = TRUE (for multiple model plots),
a.0., depending on the type of plot. See the examples.

See Also

gamlss2.

predict.gamlss2

Examples

Not run: ## load data
data(”"film90", package = "gamlss.data")

model formula

f <- ~ s(lboopen) + s(lnosc)

f <- rep(list(f), 4)

fLL11] <- update(f[[11], lborevl ~ .)

estimate model
b1 <- gamlss2(f, data = film9@, family = BCCG)

plot effects (default)
plot(b1)

plot specific effect

plot(b1, parameter = "sigma")

plot(b1, model = "sigma")

plot(b1, model = "nu", term = 1)
plot(b1, model = "nu", term = 2)
plot(b1, model = "nu”, term = "lnosc")
plot(b1, term = "lnosc")

plot all residual diagnostics
plot(b1, which = "resid")

single diagnostic plots
plot(b1, which = "hist-resid")
plot(b1, which = "qg-resid")
plot(b1, which = "wp-resid")
plot(b1, which = "scatter-resid”)

estimate another model
b2 <- gamlss2(f, data = film9@, family = BCPE)

compare estimated effects
plot(c(bl1, b2))
plot(c(b1, b2), term = "lboopen",
col = c(1, 4), 1wd = 3, 1ty =1,
pos = c("topleft”, "topright"”, "bottomleft”, "bottomright"))
plot(c(b1, b2), model = "sigma")
plot(c(bl, b2), model = "sigma"”, term = 2)
plot(c(b1, b2), model = c("mu”, "nu"))

End(Not run)

predict.gamlss2 Extracting Fitted or Predicted Parameters or Terms from gamlss2
Models

20

predict.gamlss2

Description

Methods for gamlss2 model objects for extracting fitted (in-sample) or predicted (out-of-sample)
parameters, terms, etc.

Usage

S3 method for class 'gamlss2'
predict(object, model = NULL, newdata = NULL,

type = c("parameter”, "link", "response”, "terms"), terms = NULL,
se.fit = FALSE, drop = TRUE, ...)
Arguments
object model object of class gamlss2.
model character. Which model part(s) should be predicted? Can be one or more of

non

"mu”, "sigma”, etc. By default all model parts are included.

newdata data.frame. Optionally, a new data frame in which to look for variables with
which to predict. If omitted, the original observations are used.

type character. Which type of prediction should be computed? Can be the full addi-
tive predictor(s) ("1ink", before applying the link function(s)), the correspond-
ing parameter ("parameter”, after applying the link function(s)), the individual
terms of the additive predictor(s) ("terms"), or the corresponding mean of the
response distribution ("response”).

terms character. Which of the terms in the additive predictor(s) should be included?
By default all terms are included.

se.fit logical. Should standard errors for the predictions be included? (not imple-
mented yet).

drop logical. Should the predictions be simplified to a vector if possible (TRUE) or

always returned as a data.frame (FALSE)?

currently only used for catching what as an alias for model.

Details

Predictions for gamlss2 model objects are obtained in the following steps: First, the original data is
extracted or some newdata is set up. Second, all of the terms in the additive predictors of all model
parameters ("mu”, "sigma”, ...) are computed. Third, the full additive predictor(s) are obtained by
adding up all individual terms. Fourth, the parameter(s) are obtained from the additive predictor(s)
by applying the inverse link function(s). In a final step, the mean of the associated probability

distribution can be computed.

See also prodist.gamlss2 for setting up a full distributions3 object from which moments, prob-
abilities, quantiles, or random numbers can be obtained.

Value

If drop = FALSE a data.frame. If drop = TRUE (the default), the data.frame might be simplified to a
numeric vector, if possible.

prodist.gamlss2 21

See Also

predict, prodist.gamlss2

Examples

fit heteroscedastic normal GAMLSS model

stopping distance (ft) explained by speed (mph)

data("cars"”, package = "datasets")

m <- gamlss2(dist ~ s(speed) | s(speed), data = cars, family = NO)

new data for predictions
nd <- data.frame(speed = c(10, 20, 30))

default: additive predictors (on link scale) for all model parameters
predict(m, newdata = nd)

mean of the response distribution
predict(m, newdata = nd, type = "response”)

model parameter(s)
predict(m, newdata = nd)

predict(m, newdata = nd, model = "sigma")

predict(m, newdata = nd, model = "sigma”, drop = FALSE)

individual terms in additive predictor(s)

predict(m, newdata = nd, type = "terms”, model = "sigma")

predict(m, newdata = nd, type = "terms”, model = "sigma", terms = "s(speed)")
prodist.gamlss2 Extracting Fitted or Predicted Probability Distributions from gamlss2

Models

Description

Methods for gamlss2 model objects for extracting fitted (in-sample) or predicted (out-of-sample)
probability distributions as distributions3 objects.

Usage
S3 method for class 'gamlss2'
prodist(object, ...)

Arguments
object A model object of class gamlss?2.

Arguments passed on to predict.gamlss2, e.g., newdata.

22 prodist.gamlss2

Details

To facilitate making probabilistic forecasts based on gamlss2 model objects, the prodist method
extracts fitted or predicted probability distribution objects. Internally, the predict.gamlss?2
method is used first to obtain the distribution parameters (mu, sigma, tau, nu, or a subset thereof).
Subsequently, the corresponding distribution object is set up using the GAMLSS class from the
gamlss.dist package, enabling the workflow provided by the distributions3 package (see Zeileis et
al. 2022).

Note that these probability distributions only reflect the random variation in the dependent vari-
able based on the model employed (and its associated distributional assumption for the dependent
variable). This does not capture the uncertainty in the parameter estimates.

Value

An object of class GAMLSS inheriting from distribution.

References

Zeileis A, Lang MN, Hayes A (2022). “distributions3: From Basic Probability to Probabilistic
Regression.” Presented at useR! 2022 - The R User Conference. Slides, video, vignette, code at
https://www.zeileis.org/news/user2022/.

See Also

GAMLSS, predict.gamlss2

Examples

packages, code, and data
library("distributions3”)
data("cars”, package = "datasets")

fit heteroscedastic normal GAMLSS model
stopping distance (ft) explained by speed (mph)
m <- gamlss2(dist ~ s(speed) | s(speed), data = cars, family = NO)

obtain predicted distributions for three levels of speed
d <- prodist(m, newdata = data.frame(speed = c(10, 20, 30)))
print(d)

obtain quantiles (works the same for any distribution object 'd' !)
quantile(d, 0.5)

quantile(d, c(0.05, 0.5, 0.95), elementwise = FALSE)

quantile(d, c(0.05, 0.5, 0.95), elementwise = TRUE)

visualization

plot(dist ~ speed, data = cars)

nd <- data.frame(speed = 0:240/4)

nd$dist <- prodist(m, newdata = nd)

nd$fit <- quantile(nd$dist, c(0.05, 0.5, 0.95))

matplot(nd$speed, nd$fit, type = "1", 1ty = 1, col = "slategray”, add = TRUE)

https://www.zeileis.org/news/user2022/

quantile.gamlss2 23

moments
mean(d)
variance(d)

simulate random numbers
random(d, 5)

density and distribution
pdf(d, 50 x -2:2)
cdf(d, 50 x -2:2)

Poisson example

data("FIFA2018", package = "distributions3")

m2 <- gamlss2(goals ~ s(difference), data = FIFA2018, family = PO)
d2 <- prodist(m2, newdata = data.frame(difference = 0))

print(d2)

quantile(d2, c(0.05, 0.5, 0.95))

note that log_pdf() can replicate loglLik() value
sum(log_pdf(prodist(m2), FIFA2018%$goals))
loglLik(m2)

quantile.gamlss?2 Quantiles for GAMLSS

Description

The function computes estimated quantiles and optionally produces a plot.

Usage

S3 method for class 'gamlss2'

quantile(x, probs = c(0.025, 0.25, 0.50, 0.75, 0.975),
variable = NULL, newdata = NULL,
plot = FALSE, data = TRUE,

n=100L, ...)
Arguments
X An object of class "gamlss2".
probs Numeric vector of probabilities with values in [0,1].
variable Logical or integer, should quantiles be plotted using the covariate data? Note
that the variable option is only possible for single covariate models.
newdata Data frame that should be used for computing the quantiles.
plot Logical, should a plot be shown?

data Logical, should the raw data be added to the plot?

24 quantile.gamlss2

n Integer, number of observations that should be used to compute an equidistant
grid for the selected variable.

Arguments such as col, legend = TRUE/FALSE. See the examples.

Details

The function applies the predict method to determine the parameters of the response distribution. It
then computes the quantiles as specified in the argument probs.

Value

A data frame of the estimated quantiles.

See Also

gamlss2.

Examples

Not run: ## load data
data(”"film90", package = "gamlss.data")

model formula

f <= ~ s(lboopen)

f <- rep(list(f), 4)

fLL11] <- update(f[[11], lborevl ~ .)

estimate model
b <- gamlss2(f, data = film9@, family = BCPE)

compute quantiles using "newdata”
nd <- film9o[1:10,]
print(quantile(b, newdata = nd))

plot sorted quantiles
quantile(b, plot = TRUE)

quantile plot using covariate data
quantile(b, plot = TRUE, variable = TRUE)

plot without raw data
quantile(b, plot = TRUE, variable = TRUE, data = FALSE)

End(Not run)

re 25

re Random Effects

Description

There are two ways of fitting a random effect within gamlss2. The first, using s(), is for a simple
random effect, that is, when only one factor is entered the model as a smoother. This method uses
the function s() of the package mgev with argument bs = "re”. For example, if area is factor
with several levels, s(area, bs = "re") will sringh the levels of area towards their mean level.
The second, more general way, allows to fit more complicated random effect models using the
function re(). The function re() is an interface connecting gamlss2 with the specialised package
for random effects nlme.

Here we document only the re () function only but we also give examples using s(. .., bs ="re").
Usage

re(fixed =~ 1, random = NULL, ...)
Arguments

fixed A formula that specifies the fixed effects of the n1lme{1me} model. In most cases,

this can also be included in the gamlss2 parameter formula.

random A formula specifying the random effect part of the model, as in the nlme{1me()}
function.

For the re() function, the dots argument is used to specify additional control
arguments for the nlme{1me} function, such as the method and correlation
arguments.

Details
Both functions set up model terms that can be estimated using a backfitting algorithm, e.g., the
default RS algorithm.

Value

Function s with bs = "re” returns a smooth specification object of class "re.smooth.spec”, see
also smooth.construct.re.smooth. spec.

The re () function returns a special model term specification object, see specials for details.

See Also

gamlss2, smooth.construct.re.smooth.spec, s, 1Ime

26 re

Examples

orthdontic measurement data
data(”"Orthodont”, package = "nlme")

model using 1lme()
m <- Ime(distance ~ I(age-11), data = Orthodont,
random =~ I(age-11) | Subject, method = "ML")

using re(), function I() is not supported,
please transform all variables in advance
Orthodont$agell <- Orthodont$age - 11

estimation using the re() constructor
b <- gamlss2(distance ~ s(age,k=3) + re(random =~ agell | Subject),
data = Orthodont)

compare fitted values
plot(fitted(b, model = "mu"), fitted(m))
abline(@, 1, col = 4)

extract summary for re() model term
st <- specials(b, model = "mu”, elements = "model”)
summary(st)

random intercepts and slopes with s() using AIC
a <- gamlss2(distance ~ s(age,k=3) + s(Subject, bs = "re") + s(Subject, agell, bs = "re"),
data = Orthodont)

compare fitted values

plot(fitted(b, model = "mu"), fitted(m))
points(fitted(a, model = "mu"), fitted(m), col = 2)
abline(@, 1, col = 4)

more complicated correlation structures.
data("Ovary"”, package = "nlme")

ARMA model
m <- Ime(follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time), data = Ovary,
random = pdDiag(~sin(2xpi*Time)), correlation = corARMA(q = 2))

now with gamlss2(), transform in advance
Ovary$sinl <- sin(2 * pi * Ovary$Time)
Ovary$cosl <- cos(2 * pi * Ovary$Time)

model formula
f <- follicles ~ s(Time) + re(random =~ sinl | Mare,
correlation = corARMA(q = 2), control = lmeControl(maxIter = 100))

estimate model
b <- gamlss2(f, data = Ovary)

response_name

smooth random effects
f <- follicles ~ ti(Time) + ti(Mare, bs = "re") +
ti(Mare, Time, bs = c("re”, "cr"), k = c(11, 5))

g <- gamlss2(f, data = Ovary)

compare fitted values
par(mfrow = n2mfrow(nlevels(Ovary$Mare)), mar = c(4, 4, 1, 1))

for(j in levels(Ovary$Mare))
{
ds <- subset(Ovary, Mare == j)

plot(follicles ~ Time, data = ds)

f <- fitted(b, model = "mu")[Ovary$Mare == j]
lines(f ~ ds$Time, col = 4, lwd = 2)

f <- fitted(g, model = "mu")[Ovary$Mare == j]
lines(f ~ ds$Time, col = 3, lwd = 2)

f <- fitted(m)[Ovary$Mare == j]
lines(f ~ ds$Time, col = 2, lwd = 2)

response_name Auxiliary Functions for Formulas and Model Objects

Description

Various auxiliary functions to facilitate the work with formulas and fitted model objects.

Usage

response_name(formula)

Arguments

formula A formula, Formula, or a fitted model object.

Value

Function response_name extracts the response name as a character vector.

See Also

gamlss?2

28 RS

Examples

basic formula
f <-y~x1+ x2 + log(x3)
response_name (f)

formula with multiple responses
f<-yl | y2 | y3~x1 +s(x2) + x3 + te(log(x3), x4) | x2 + ti(x5)
response_name(f)

list of formulas

f <- list(
y1 ~ x1 + s(x2) + x3 + te(log(x3), x4),
y2 ~ x2 + sqrt(x5),
y3 ~ z2 + x1 + exp(x3) + s(x10)

)

response_name (f)

RS Rigby and Stasinopoulos (RS) & Cole and Green (CG) Algorithm

Description

The function RS() implements the algorithm of Rigby and Stasinopoulos, the function CG() imple-
ments the algorithm of Cole and Green for estimating a GAMLSS with gamlss2.

Usage

Rigby and Stasinopoulos algorithm.
RS(x, y, specials, family, offsets,
weights, start, xterms, sterms, control)

Cole and Green algorithm.
CG(x, y, specials, family, offsets,
weights, start, xterms, sterms, control)

Arguments
X The full model matrix to be used for fitting.
y The response vector or matrix.
specials A named list of special model terms, e.g., including design and penalty matrices
for fitting smooth terms using smooth.construct.
family A family object, see gamlss2.family.
offsets If supplied, a list or data frame of possible model offset.

weights If supplied, a numeric vector of weights.

RS 29

start Starting values, either for the parameters of the response distribution or, if speci-
fied as a named list in which each element of length one is named with " (Intercept)”,
the respective intercepts are initialized. If starting values are specified as a
named list, data frame or matrix, where each element/column is a vector with the
same length as the number of observations in the data, the respective predictors
are initialized with these. See the examples for gamlss2.

xterms A named list specifying the linear model terms. Each named list element repre-
sents one parameter as specified in the family object.

sterms A named list specifying the special model terms. Each named list element rep-
resents one parameter as specified in the family object.
control Further control arguments as specified within the call of gamlss2. See the de-
tails.
Details

Functions RS() and CG() are called within gamlss2. Both functions implement a backfitting algo-
rithm for estimating GAMLSS. For algorithm details see Rigby and Stasinopoulos (2005).

The functions use the following control arguments:
* eps: Numeric vector of length 2, the stopping criterion. Default is eps = c(1e-05, 1e-05)
for the outer and the inner backfitting loop.

* maxit: Integer vector of length 2, the maximum number of iterations of the outer and inner
backfitting loop. Default is maxit = c(100, 10).

* step: Numeric, the step length control parameter. Default is step = 1. Note that if step is set
smaller than 1, it might be appropriate to lower the stopping criterion eps, too.

* CG: Integer, the number of iterations when to start the CG correction. Default is CG = Inf.
* trace: Logical, should information be printed while the algorithm is running?
* flush: Logical, use flush.console for displaying the current output in the console.

* ridge: Logical, should automatic ridge penalization be applied only to linear effects, without
penalizing the intercept? For each parameter of the distribution the optimum ridge penalty
is estimated using an information criterion. Possible options are criterion=c("aic”,
"aicc", "bic", "gaic", "gcv"). The default is criterion = "gaic" and argument K = 2,
which can be set in gamlss2_control.

To facilitate the development of new algorithms for gamlss2, users can exchange them using the
optimizer argument in gamlss2_control. Users developing new model fitting functions are ad-
vised to use these functions as templates and pass them to gamlss2_control. Alternatively, users
can replace the optimizer function by adding a named list element, "optimizer”, to the family
object. For instructions on setting up new families in gamlss2, see gamlss2.family.

Value

Functions RS() and CG() return a named list of class "gamlss2" containing the following objects:

fitted.values A data frame of the fitted values of the modeled parameters of the selected dis-
tribution.

30 Rsq

fitted.specials
A named list, one element for each parameter of the distribution, containing the
fitted model object information of special model terms.

fitted.linear A named list, one element for each parameter of the distribution, containing the
information on fitted linear effects.

coefficients A named list, one element for each parameter of the distribution, containing the
estimated parameters of the linear effects.

elapsed The elapsed runtime of the algorithm.

iterations How many iterations the algorithm performed.

loglik The final value of the log-likelihood of the model.

control All control arguments used as supplied from function gamlss2_control.
References

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale and Shape
(with Discussion).” Journal of the Royal Statistical Society, Series C (Applied Statistics), 54, 507—
554. doi:10.1111/j.14679876.2005.00510.x

See Also

gamlss2, gamlss2_control, gamlss2.family

Examples

Not run: ## load the abdominal circumference data
data("abdom”, package = "gamlss.data")

specify the model Formula
<y ~s(x) | s(x) | s(x) | sx)

estimate model using RS (default)
b <- gamlss2(f, data = abdom, family = BCT, optimizer = RS)

now with CG
b <- gamlss2(f, data = abdom, family = BCT, optimizer = CG)

first 2 RS iterations and afterwards switch to CG
b <- gamlss2(f, data = abdom, family = BCT, CG = 2)

End(Not run)

Rsq GAIC and Generalised (Pseudo) R-squared for GAMLSS Models

Description

Functions to compute the GAIC and the generalised R-squared of Nagelkerke (1991) fora GAMLSS
models.

https://doi.org/10.1111/j.1467-9876.2005.00510.x

Rsq 31

Usage

Information criteria.
GAIC(object, ...,
k = 2, corrected = FALSE)

R-squared.

Rsq(object, ...,
type = c("Cox Snell”, "Cragg Uhler”, "both", "simple"),
newdata = NULL)

Arguments
object A fitted model object
Optionally more fitted model objects.
k Numeric, the penalty to be used. The default k = 2 corresponds to the classical
AIC.
corrected Logical, whether the corrected AIC should be used? Note that it applies only
when k = 2.
type which definition of R squared. Can be the "Cox Snell” or the Nagelkerke,
"Cragg Uhler” or "both”, and "simple”, which computes the R-squared based
on the median. In this case also newdata may be supplied.
newdata Only for type = "simple” the R-squared can be evaluated using newdata.
Details

The Rsq() function uses the definition for R-squared:

R2 L @ 2/n
L(6)

where L(0) is the null model (only a constant is fitted to all parameters) and L(#) is the current fitted
model. This definition sometimes is referred to as the Cox & Snell R-squared. The Nagelkerke
/Cragg & Uhler’s definition divides the above with

1— L(0)*/™

Value

Numeric vector or data frame, depending on the number of fitted model objects.

References

Nagelkerke NJD (1991). “A Note on a General Definition of the Coefficient of Determination.”
Biometrika, 78(3), 691-692. doi:10.1093/biomet/78.3.691

https://doi.org/10.1093/biomet/78.3.691

32 softplus

See Also

gamlss?

Examples

load the aids data set
data("aids”, package = "gamlss.data")

estimate negative binomial count models
b1 <- gamlss2(y ~ x + qrt, data = aids, family = NBI)
b2 <- gamlss2(y ~ s(x) + s(qrt, bs = "re"), data = aids, family = NBI)

compare models

Rsq(b1)

Rsq(b1, type = "both")
Rsq(b1, b2)

GAIC(b1, b2)

AIC(b1, b2)

BIC(b1, b2)

plot estimated effects
plot(b2)

softplus Softplus Link Object

Description
Link object (with link function, inverse link function, etc.) that assures positivity of parameters
based on the softplus function.

Usage
softplus(a = 1)

Arguments

a Extra parameter of the generalized softplus function

Details

The softplus link function with parameter a is given by:

log(1 + exp(a - x))

This is an approximation of the linear spline max{0, x} where the discrepancy between the two
functions decreases with increasing a.

softplus 33

Wiemann et al. (2023) propose to employ the softplus function as the inverse link function where
positivity of a parameter needs to be assured, e.g., in count data regressions. This is in particular
of interest as an alternative to the exponential inverse link function because the exponential implies
multiplicative effects of the regressors while the softplus function does not.

Value

An object of class "1ink-glm".

References

Wiemann PFV, Kneib T, Hambuckers J (2023). “Using the Softplus Function to Construct Alter-
native Link Functions in Generalized Linear Models and Beyond.” Statistical Papers, forthcoming.
doi:10.1007/s0036202301509x

See Also

make.link, gamlss?2

Examples

visualization of softmax function from Wiemann et al. (2003, Figure 1)
X <- -200:200/50
plot(x, softplus(1)$linkinv(x), ylab = expression(softplus[al(x)),
type = "1", col = 2, lwd = 2)
grid()
lines(x, softplus(5)$linkinv(x), col = 3, 1lwd = 2)
lines(x, softplus(1@)$linkinv(x), col = 4, lwd = 2)
lines(x, pmax(@, x), 1lty = 3, 1lwd = 2)
legend("topleft”, c("a = 1", "a = 5", "a = 10", "linear spline"),
col = c(2, 3, 4, 1), 1ty = c(1, 1, 1, 3), 1lwd = 2, bty = "n")

Poisson regression example with different links

data("FIFA2018", package = "distributions3")

m_exp <- glm(goals ~ difference, data = FIFA2018, family = poisson(link = "log"))
m_splus <- glm(goals ~ difference, data = FIFA2018, family = poisson(link = softplus(1)))
AIC(m_exp, m_splus)

comparison of fitted effects
nd <- data.frame(difference = -15:15/10)
nd$mu_exp <- predict(m_exp, newdata = nd, type = "response"”)
nd$mu_splus <- predict(m_splus, newdata = nd, type = "response”)
plot(mu_exp ~ difference, data = nd, ylab = expression(mu),
type = "1", col = 4, lwd = 2, ylim = c(@, 2.5))
lines(mu_splus ~ difference, data = nd, col = 2, lwd = 2)
legend("topleft”, c("exp”, "softplus”), col = c(4, 2), lwd = 2, 1ty = 1, bty = "n")

https://doi.org/10.1007/s00362-023-01509-x

34 special_terms

special_terms Special Model Terms for GAMLSS

Description

The gamlss2 package provides infrastructure to include special model terms for the optimizer func-
tions RS and CG, e.g., such as neural networks, trees and forests. The infrastructure assumes that
such special model terms provide their own fitting and predict method.

Usage
Generic fitting method.
special _fit(x, ...)

Generic predict method.
special_predict(x, ...)

Extractor function for fitted special terms.

specials(object, model = NULL, terms = NULL, elements = NULL, ...)
Arguments
X A model term object as supplied in the formula in the gamlss2 call.
object A fitted gamlss?2 object.
model Character or integer, specifies the model for which fitted special terms should be
extracted.
terms Character or integer, specifies the special model terms that should be extracted.
elements Character, specifies which elements of a fitted special term should be extracted.

If elements = "names”, the corresponding element names are extracted.

Arguments needed for the special_fit() function to facilitate the fitting of the
model term, see the details. Similarly, for the special_predict() function, the

. argument encompasses the objects for computing predictions for the model
term.

Details

To implement a new special term, the first step is to write a formula constructor function for the new
model term. For example, consider the implementation below, which demonstrates how to create
a neural network model term. Additionally, the name of the new model term constructor must be
passed to the specials argument of the function fake_formula. Please note that in the provided
example, no new special name is passed because "n" is already registered in fake_formula.

Afterwards, a fitting and a predict method for the new special model term needs to be implemented.
Please also refer to the example below, implementing these functions for a neural network model
term.

The following describes the detailed arguments and return values.

A method for special_fit() has the following arguments:

special_terms 35

* x: The special model term object, containing all the data for fitting.

* z: The current working response/residual from the backfitting step.

* w: The current working weights from the backfitting step.

* y: The response vector/matrix, e.g., used to evaluate the log-likelihood.

* eta: The current named list of predictors.

* j: Character, the parameter name for which the model term needs to be updated.
* family: The family object of the model, see gamlss2.family.

* control: A named list of control arguments, see gamlss2_control.

Note that for setting up a special model term only the first three arguments a mandatory, all other ar-
guments are optional. The function must at least return a named list containing the "fitted.values”
to work with RS and CG.

A method for special_predict() has the following arguments:

* x: Depending on the return value of function special_fit(), the fitted model term object,
see the examples.

* data: The data for which predictions should be computed.

* se.fit: Logical, should standard errors of the predictions be computed.

Note that function special_predict() should return a data frame with named colums "fit",
"lower" and "upper"”, "lower"” and "upper" are optional.

See Also

gamlss2, RS, gamlss2_control, gamlss2.family

Examples

example special term for neural networks,

the constructor function is used in the formula
when calling gamlss2()

n <- function(formula, ...)

{

stopifnot(requireNamespace("nnet"))

list for setting up the special model term
st <- list()

list of control arguments
ctr <- list(...)
if(is.null(ctr$size))
ctr$size <- 50
if(is.null(ctr$maxit))
ctr$maxit <- 1000
if(is.null(ctr$decay))
ctr$decay <- 0.1
if(is.null(ctr$trace))
ctr$trace <- FALSE
if(is.null(ctr$MaxNwts))

36 special_terms

ctr$MaxNWts <- 10000
if(is.null(ctr$scale))
ctr$scale <- TRUE

put all information together

st$control <- ctr

st$formula <- formula

st$term <- all.vars(formula)

st$label <- paste@("n(", pasted(gsub(” ", "", as.character(formula)), collapse =""), ")")
st$data <- model.frame(formula)

scale per default!
if(ctr$scale) {
sx <- list()
for(j in colnames(st$data)) {
if(!is.factor(st$datall[j1]1)) {
sx[[j1] <- range(st$datal[j1])
st$datal[j]] <- (st$datal[j1] - sx[[3IIC1]) / diff(sx[[3I11)

}
}
st$scalex <- sx
}
assign the "special” class and the new class "n”
class(st) <- c("special”, "n")
return(st)
}
set up the special "n"” model term fitting function
special_fit.n <- function(x, z, w, control, ...)
{
model formula needs to be updated
.fnns <- update(x$formula, response_z ~ .)

assign current working response
x$data$response_z <- z
x$datagweights_w <- w

possible weights from last iteration
Wts <- list(...)$transfer$Wts

estimate model

nnc <- parse(text = paste@('nnet::nnet(formula = .fnns, data = x$data, weights = weights_w, "',
'size = x$control$size, maxit = x$control$maxit, decay = x$control$decay, ',
"trace = x$control$trace, MaxNWts = x$control$MaxNWts, linout = TRUE',
if(lis.null(Wts)) ', Wts = Wts)' else ')'))

rval <- list("model” = eval(nnc))

get the fitted.values
rval$fitted.values <- predict(rval$model)

special_terms 37

transferring the weights for the next backfitting iteration
note, "transfer” can be used to transfer anything from one
iteration to the next

rval$transfer <- list("Wts" = rval$model$wts)

center fitted values
rval$shift <- mean(rval$fitted.values)
rval$fitted.values <- rval$fitted.values - rval$shift

degrees of freedom
rval$edf <- length(coef(rval$model))

possible scaling
rval$scalex <- x$scalex

assign class for predict method
class(rval) <- "n.fitted”

return(rval)
3
finally, the predict method
special_predict.n.fitted <- function(x, data, se.fit = FALSE, ...)
{

if(lis.null(x$scalex)) {
for(j in names(x$scalex)) {
datal[j]] <- (datal[jl] - x$scalex[[jI1[1]) / diff(x$scalex[[jI11)
}
}
p <- predict(x$model, newdata = data, type = "raw”)
p <- p - x$shift
if(se.fit)
p <- data.frame("fit" = p)
return(p)
3

Not run: ## example with data
data("abdom”, package = "gamlss.data")

specify the model Formula
f<-y~n(x) | n(>x) | n(>x) | n(~x)

estimate model,

set the seed for reproducibility

note, data should be scaled!
set.seed(123)

b <- gamlss2(f, data = abdom, family = BCT)

visualize estimated effects
plot(b, which = "effects")

plot diagnostics
plot(b, which = "resid")

38

predict parameters
par <- predict(b)

predict quantiles
pq <- sapply(c(@.05, 0.5, 0.95), function(q) family(b)$q(q, par))

plot
plot(y ~ x, data = abdom, pch = 19,
col = rgh(0.1, 0.1, 0.1, alpha = 0.3))
matplot(abdom$x, pqg, type = "1", lwd = 2,
1ty = 1, col = 4, add = TRUE)

another example using the Munich rent data
data("rent”, package = "gamlss.data")

model Formula
f <~ R ~ n(~Fl+A,size=10,decay=0.7) | n(~F1+A,size=10,decay=0.7)

estimate model
set.seed(456)
b <- gamlss2(f, data = rent, family = GA)

plot estimated effects
plot(b, which = "effects"”, persp = FALSE)

diagnostics
plot(b, which = "resid")

predict using new data

n <- 50

nd <- with(rent, expand.grid(
"F1" = seq(min(Fl), max(Fl), length = n),
"A" = seq(min(A), max(A), length = n)

))

predict parameters of the GA distribution
par <- predict(b, newdata = nd)

compute median rent R estimate
nd$fit <- family(b)$q(@.5, par)

visualize
library("lattice")

pl <- wireframe(fit ~ F1 + A, data
screen = list(z = 50, x = -70, y
aspect = c(1, 0.9), drape = TRUE,
main = "n(~F1+A)",
xlab = "Floor”, ylab = "YoC",
zlab = "Rent")

nd,
-10),

p2 <- levelplot(fit ~ F1 + A, data = nd,

special_terms

stepwise 39

contour = TRUE,
main = "n(~F1+A)", xlab = "Floor", ylab = "YoC")

print(p1, split = c(1, 1, 2, 1), more = TRUE)
print(p2, split = c(2, 1, 2, 1), more = FALSE)

extract fitted special terms,
fitted NN for parameter mu
specials(b, model = "mu”, elements = "model”)

same for sigma
specials(b, model = "sigma”, elements = "model"”)

return element names of fitted special term list
specials(b, model = "sigma”, elements = "names")

End(Not run)

stepwise Stepwise Model Term Selection Using GAIC

Description

The optimizer function stepwise() performs stepwise model term selection using a Generalized
Akaike Information Criterion (GAIC). Estimation is based on the Rigby and Stasinopoulos (RS) &
Cole and Green (CG) algorithm as implemented in function RS.

Usage

Wrapper function for stepwise GAMLSS estimation.
step_gamlss2(formula, ..., K = 2,
strategy = c("both.linear”, "both"), keeporder = FALSE,
cores = 1L)

After stepwise search, extract the new formula.
new_formula(object)

Stepwise optimizer function.
stepwise(x, y, specials, family, offsets,
weights, start, xterms, sterms, control)

Arguments
formula A model formula for gamlss2.
Arguments passed to gamlss2.

K Numeric, the penalty for the GAIC.

40 stepwise

strategy Character, the strategy that should be applied for the stepwise algorithm. Possi-
ble options are "forward.linear”, "forward”, "backward”, "backward. linear”,

n on

"replace”, "replace.linear”, "both”, "both.linear"”. See the details.

keeporder Logical, For the different strategies of the stepwise algorithm, should the up-
dates be performed sequentially according to the order of the parameters of the
response distribution as specified in the family (see gamlss2.family), or should
the selection search be performed across all parameters?

cores Integer, if cores > 1L, function mclapply function is used to speed up compu-
tations using multiple cores within the selection steps.

object An object fitted using step_gamlss2().

X The full model matrix to be used for fitting.

y The response vector or matrix.

specials A named list of special model terms, e.g., including design and penalty matrices
for fitting smooth terms using smooth.construct.

family A family object, see gamlss2.family.

offsets If supplied, a list or data frame of possible model offset.

weights If supplied, a numeric vector of weights.

start Starting values, either for the parameters of the response distribution or, if speci-

fied as a named list in which each element of length one is named with " (Intercept)”,
the respective intercepts are initialized. If starting values are specified as a
named list, data frame or matrix, where each element/column is a vector with the

same length as the number of observations in the data, the respective predictors

are initialized with these. See the examples for gamlss2.

xterms A named list specifying the linear model terms. Each named list element repre-
sents one parameter as specified in the family object.

sterms A named list specifying the special model terms. Each named list element rep-
resents one parameter as specified in the family object.

control Further control arguments as specified within the call of gamlss2.

Details

The wrapper function step_gamlss2() calls gamlss2 using the stepwise() optimizer function.

The stepwise algorithm can apply the following strategies:

1. Each predictor must include an intercept.

2. In a forward selection step, model terms with the highest improvement on the GAIC are se-
lected.

3. In a replacement step, each model term is tested to see if an exchange with a model term not
yet selected will improve the GAIC.

4. In a backward step, model terms are deselected, if the GAIC can be further improved.
5. In a bidirectional step, model terms can be either added or removed.

6. In addition, the forward, backward and replace selection step can be combined.

stepwise 41

The selected strategies are iterated until no further improvement is achieved.

The different strategies can be selected using argument strategy. Please see the examples. Possi-
ble values are strategy = c("both”, "forward”, "backward”, "replace”, "all"). Here, strategy
= "all"” combines the forward, backward and replace selection step.

In addition, each of the steps 2-4 can be applied to linear model terms only, prior to performing the
steps for all model terms. This can be done by additionally setting strategy = c("both.linear”,
"forward.linear"”, "backward.linear"”, "replace.linear”, "all.linear").

The default is strategy = c("both.linear”, "both") and keeporder = FALSE.

Note that each of the steps 2-4 can be performed while maintaining the order of the parameters of
the response distribution, i.e., if the keeporder = TRUE argument is set, then the parameters will
be updated in the order specified in the gamlss2.family. Using backward elimination, the model
terms are deselected in reverse order.

Value

The optimizer function stepwise() returns the final model as named list of class "gamlss2". See
the return value of function RS. The wrapper function step_gamlss2() also returns the final model.

See Also

gamlss2, gamlss2_control, RS

Examples

Not run: ## load the Munich rent data
data("rent”, package = "gamlss.data")

because of possible linear interactions,
scale the covariates first

rent$Fl <- scale(rent$Fl)

rent$A <- scale(rent$A)

the Formula defines the searching scope
f<-R~FL+ A+ Fl:A + loc + s(F1) + s(A) + te(F1, A) |
F1 + A + loc + F1:A + s(F1) + s(A) + te(F1l, A)

estimate a Gamma model using the stepwise algorithm
b <- step_gamlss2(f, data = rent, family = GA, K = 2)

same with
b <- gamlss2(f, data = rent, family = GA, optimizer = stepwise, K = 2)

show the new formula of selected model terms
new_formula(b)

final model summary
summary (b)

effect plots
plot(b)

42

stepwise

diagnostic plots
plot(b, which = "resid")

plot GAIC
plot(b, which = "selection")

use forward linear, replace and backward strategy
b <- step_gamlss2(f, data = rent, family = GA, K = 2,
strategy = c("forward.linear”, "replace”", "backward"))

more complex model

note, the third parameter

nu does not include any model terms

f<-R~Fl+ A+ FLl:A + loc + s(F1) + s(A) + te(F1, A) |
F1 + A + loc + F1:A + s(F1) + s(A) + te(F1l, A) |
1
F1 + A + loc + F1:A + s(F1) + s(A) + te(F1l, A)

model using the BCT family

b <- step_gamlss2(f, data = rent, family = BCT,
K = 2, strategy = c("forward.linear"”, "both"),
keeporder = TRUE)

plot GAIC
plot(b, which = "selection")

End(Not run)

Index

* aplot
plot.gamlss2, 18
quantile.gamlss2, 23

+ datasets
HarzTraffic, 14

* distribution
find_family, 5
gamlss2.family, 9
prodist.gamlss2, 21
softplus, 32

+ models
find_family, 5
gamlss2, 6
gamlss2.family, 9
gamlss2_control, 13
RS, 28
softplus, 32
special_terms, 34
stepwise, 39

re, 25
response_name, 27

available_families (find_family), 5

CG, 10, 34, 35
CG (RS), 28

fake_formula, 3, 3, 34

family.gamlss2 (gamlss2.family), 9

find_family, 5

fit_family (find_family), 5
flush.console, /3,29
Formula, 3, 4, 7, 27
formula, 3,4, 7,27
formula.gam, 7

GAIC, 5, 6, 39
GAIC (Rsq), 30
GAMLSS, 22

+ package gamlss2, 3-6, 6, 10, 13, 14, 17, 18, 20-22, 24
gamlss2-package, 2 25, 27-30, 32-35, 3941

* regression gamlss2-package, 2
fake_formula, 3 gamlss2.family, 5, 7, 8,9, 28-30, 35, 40, 41
find_family, 5 gamlss2_control, 7, 8, 13, 29, 30, 35, 41

gamlss2, 6
gamlss2.family, 9
gamlss2_control, 13
pb, 16
predict.gamlss2, 19
re, 25
response_name, 27
RS, 28
Rsq, 30
softplus, 32
special_terms, 34
stepwise, 39

+ utilities
fake_formula, 3
pb, 16

43

HarzTraffic, 14

legend, 5
list, 3, 10
Ime, 25

make.link, 33
mclapply, 40
model.frame, 3,7

new_formula (stepwise), 39
nlme, 25

pb, 16
plot.gamlss2, 18

44

predict, /8, 21
predict.gamlss2, 19, 21, 22
prodist, 22
prodist.gamlss2, 20, 21, 21

quantile.gamlss2, 23

re, 25

response_name, 27

RS, 8, 14, 25, 28, 34, 35, 39, 41
Rsq, 30

s, 16, 17,25
smooth.construct, 28, 40

smooth.construct.ps.smooth.spec, 17
smooth.construct.re.smooth.spec, 25

softplus, 32

special_fit (special_terms), 34
special_predict (special_terms), 34

special_terms, 34
specials, 25

specials (special_terms), 34
step_gamlss?2 (stepwise), 39
stepwise, 39

terms.formula, 3
try, 6

INDEX

	gamlss2-package
	fake_formula
	find_family
	gamlss2
	gamlss2.family
	gamlss2_control
	HarzTraffic
	pb
	plot.gamlss2
	predict.gamlss2
	prodist.gamlss2
	quantile.gamlss2
	re
	response_name
	RS
	Rsq
	softplus
	special_terms
	stepwise
	Index

