Title: | Plotting Functions for Generalized Additive Model for Location Scale and Shape |
---|---|
Description: | Functions for plotting Generalized Additive Models for Location Scale and Shape from the 'gamlss' package, Stasinopoulos and Rigby (2007) <doi:10.18637/jss.v023.i07>, using the graphical methods from 'ggplot2'. |
Authors: | Mikis Stasinopoulos [aut, cre, cph] , Robert Rigby [aut] , Fernanda De Bastiani [aut] , Julian Merder [ctb] |
Maintainer: | Mikis Stasinopoulos <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 2.1-17 |
Built: | 2025-01-15 06:11:52 UTC |
Source: | https://github.com/gamlss-dev/gamlss.ggplots |
Functions for plotting Generalized Additive Models for Location Scale and Shape from the 'gamlss' package, Stasinopoulos and Rigby (2007) <doi:10.18637/jss.v023.i07>, using the graphical methods from 'ggplot2'.
The DESCRIPTION file:
Package: | gamlss.ggplots |
Title: | Plotting Functions for Generalized Additive Model for Location Scale and Shape |
Version: | 2.1-17 |
Date: | 2024-12-16 |
Authors@R: | c(person("Mikis", "Stasinopoulos", role = c("aut", "cre", "cph"), email = "[email protected]", comment = c(ORCID = "0000-0003-2407-5704")), person("Robert", "Rigby", role = "aut", email = "[email protected]", comment = c(ORCID = "0000-0003-3853-1707")), person("Fernanda", "De Bastiani", role = "aut", email = "[email protected]", comment = c(ORCID = "0000-0001-8532-639X")), person("Julian", "Merder", role = "ctb") ) |
Description: | Functions for plotting Generalized Additive Models for Location Scale and Shape from the 'gamlss' package, Stasinopoulos and Rigby (2007) <doi:10.18637/jss.v023.i07>, using the graphical methods from 'ggplot2'. |
License: | GPL-2 | GPL-3 |
URL: | https://www.gamlss.com/ |
BugReports: | https://github.com/gamlss-dev/gamlss.ggplots/issues |
Depends: | R (>= 3.5.0), gamlss.dist, gamlss (>= 4.3.3), gamlss.foreach |
Imports: | methods, ggridges, ellipse, gamlss.inf, foreach, mgcv, ggplot2, yaImpute, gamlss2 |
Suggests: | glmnet, reshape2, igraph, networkD3, grid, gridExtra |
Additional_repositories: | https://gamlss-dev.R-universe.dev |
LazyLoad: | yes |
Repository: | https://gamlss-dev.r-universe.dev |
RemoteUrl: | https://github.com/gamlss-dev/gamlss.ggplots |
RemoteRef: | HEAD |
RemoteSha: | c742a1e3ac755bb57b7476a988bff8c4486022b9 |
Author: | Mikis Stasinopoulos [aut, cre, cph] (<https://orcid.org/0000-0003-2407-5704>), Robert Rigby [aut] (<https://orcid.org/0000-0003-3853-1707>), Fernanda De Bastiani [aut] (<https://orcid.org/0000-0001-8532-639X>), Julian Merder [ctb] |
Maintainer: | Mikis Stasinopoulos <[email protected]> |
Index of help topics:
ACE Alternating Conditional Expectations boot_coef Plotting Bootstrap Coefficients centile_bucket Centile bucket plot family_pdf Plotting Probabilities Density Functions (pdf's) for GAMLSS fit_PB P-spline smoother fitted_cdf Plotting Cumulative Distribution Functions (cdf's) for GAMLSS, fitted_centiles Plotting centile (growth) curves fitted_devianceIncr Plotting the deviance increment of GAMLSS fitted_leverage Plot of the linear leverage of a GAMLSS model fitted_terms Plotting fitted additive terms gamlss.ggplots-package Plotting Functions for Generalized Additive Model for Location Scale and Shape histSmo_plot Supporting histSmo() model_GAIC Plotting GAIC for GAMLSS models model_pca Plotting residuals using PCA moment_bucket Moment bucket plot moment_gray_half Functions to create the background for the bucket plots pcr_coef_path Plotting the fitted path of a PCR model. pe_param Partial Effect of a term on the parameters and predictors pe_pdf Partial Effect of a term on the response distribution prof_term Plotting the profile deviance of one fitted term resid_density Density of the residuals in a GAMLLSS model resid_dtop Detrended Transformed Owen's Plot and ECDF for the residuals resid_index A residual plots resid_qqplot QQ-plot of the residuals of a GAMLSS model resid_symmetry Symmetry plots resid_wp Worm plot using ggplot2 resp_mu Plotting the response against quantities of the fitted model y_hist Histogram and density plot.
The following convention has been used to name the functions:
fitted_NAME
: plots concerning fitted values from a single fitted model
resid_NAME
: plots concerning residuals from a single fitted model
predict_NAME
: plots concerning prediction values from a single fitted model usually having newdata
option.
model_NAME
: plots concerning different fitted models
where NAME
refer to different characteristics.
Mikis Stasinopoulos [aut, cre, cph] (<https://orcid.org/0000-0003-2407-5704>), Robert Rigby [aut] (<https://orcid.org/0000-0003-3853-1707>), Fernanda De Bastiani [aut] (<https://orcid.org/0000-0001-8532-639X>), Julian Merder [ctb]
Maintainer: Mikis Stasinopoulos <[email protected]>
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stasinopoulos, M. D., Rigby, R. A., and De Bastiani F., (2018) GAMLSS: a distributional regression approach, Statistical Modelling, Vol. 18, pp, 248-273, SAGE Publications Sage India: New Delhi, India.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
library(gamlss) m1 <- gamlss(y~pb(x), data=abdom) resid_index(m1)
library(gamlss) m1 <- gamlss(y~pb(x), data=abdom) resid_index(m1)
The function ACE()
uses the alternating conditional expectations algorithm to find a transformations of y
and x
that maximise the proportion of variation in y explained by x. It is a less general function than the ace()
function of the package 'acepack' in that it takes only one explanatory variable. The function ACE()
is used by the function mcor()
to calculate the maximal correlation between x
and y
.
ACE(x, y, weights, data = NULL, con_crit = 0.001, fit.method = c("loess", "P-splines"), nseg = 10, max.df = 6, ...) mcor(x, y, data = NULL, fit.method = c("loess", "P-splines"), nseg = 10, max.df = 6, ...)
ACE(x, y, weights, data = NULL, con_crit = 0.001, fit.method = c("loess", "P-splines"), nseg = 10, max.df = 6, ...) mcor(x, y, data = NULL, fit.method = c("loess", "P-splines"), nseg = 10, max.df = 6, ...)
x |
the unique x-variables |
y |
the y-variable |
weights |
prior weights |
data |
a data frame for y, x and weights |
con_crit |
the convergence criterio of the algorithm |
fit.method |
the method use to fit the smooth functions $t_1()$ and $t_2()$ |
nseg |
the number of knots |
max.df |
the maximum od df allowed |
... |
arguments to pass to the fitted functions |
The function ACE
is a simplified version of the function ace()
of the package agepack.
A fitted ACE
model with methods print.ACE()
and plot.ACE()
Mikis Stasinopoulos
Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with comments and rejoinder). Statist. Sci, 11, 89-121.
Rigby, R. A. and Stasinopoulos D. M.(2005). Generalized additive models for location, scale and shape, (with discussion),Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
fit_PB
data(rent) ACE(Fl, R, data=rent) pp <- ACE(Fl, R, data=rent) pp plot(pp) mcor(Fl, R, data=rent)
data(rent) ACE(Fl, R, data=rent) pp <- ACE(Fl, R, data=rent) pp plot(pp) mcor(Fl, R, data=rent)
The function boot_coef()
plots in one or multiple pages the results from a boostrap generated by the function BayesianBoot()
, NonParamatricBoot
or nonpar_boot().
The function boot_coef_one()
plots a single parameter.
boot_coef(x, terms = NULL, hist.col = "black", hist.fill = "white", dens.fill = "#FF6666", alpha = 0.2, nrow = NULL, ncol = NULL, plots.per.page = 9, one.by.one = FALSE, title, ...) boot_coef_one(x, par = 1, rug = TRUE, alpha = 0.2, hist.col = "black", hist.fill = "white", line.col = "gray", dens.fill = "#FF6666", title, ...)
boot_coef(x, terms = NULL, hist.col = "black", hist.fill = "white", dens.fill = "#FF6666", alpha = 0.2, nrow = NULL, ncol = NULL, plots.per.page = 9, one.by.one = FALSE, title, ...) boot_coef_one(x, par = 1, rug = TRUE, alpha = 0.2, hist.col = "black", hist.fill = "white", line.col = "gray", dens.fill = "#FF6666", title, ...)
x |
a |
terms |
which terms to plot (default NULL means all terms |
par |
which parameter to plot |
hist.col |
colour of the border histogram |
hist.fill |
the colour of the histogram |
dens.fill |
the colour of the density estimate |
alpha |
transparity constant |
nrow |
how namy rows |
ncol |
how many columns |
plots.per.page |
the maxiimum plots per page |
one.by.one |
whether single plots |
rug |
whether rug is required for |
line.col |
the vertical line colour for |
title |
the title |
... |
for more argument |
The function plots in one ore multiple pages the results from a boostrap simulation
Greates a ggplot object
Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
data(aids) a <- gamlss(y ~ pb(x) + qrt, data = aids, family = NBI) registerDoParallel(cores = 2) B1 <- BayesianBoot(a, B=100) stopImplicitCluster() boot_coef(B1)
data(aids) a <- gamlss(y ~ pb(x) + qrt, data = aids, family = NBI) registerDoParallel(cores = 2) B1 <- BayesianBoot(a, B=100) stopImplicitCluster() boot_coef(B1)
A bucket plot is a graphical way to check the skewness and kurtosis of a continuous variable or the residuals of a fitted GAMLSS model. It plots the centile skewness (tail or central) and transformed centile kurtosis of the variable (or residuals) together with a cloud of points obtained using a non-parametric bootstrap from the original variable (or residuals). It also provides a graphical way of performing a Monte Carlo simulation test on whether the centile skewness and transformed centile kurtosis of the variable of interest are simultaneously equal to zero.
There are two function here:
i) cenlile_bucket()
for a single bucket plot. Note that model_cent_bucket()
and centile_bucket()
are synonymous.
ii) centile_bucket_wrap()
for multiple bucket plots cut according to terms in the model.
centile_bucket(x, ..., type = c("tail", "central"), weights = NULL, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, sim_test = FALSE, no_sim_test = 1000, col_sim_test = gray(0.7), alpha_sim_test = 0.1, seed_test = 1234) model_cent_bucket(x, ..., type = c("tail", "central"), weights = NULL, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, sim_test = FALSE, no_sim_test = 1000, col_sim_test = gray(0.7), alpha_sim_test = 0.1, seed_test = 1234) centile_bucket_wrap(x, ..., type = c("tail", "central"), weights = NULL, xvar = NULL, n_inter = 4, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, check_overlap_text = FALSE, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, sim_test = FALSE, no_sim_test = 1000, col_sim_test = gray(0.7), alpha_sim_test = 0.1, seed_test = 1234)
centile_bucket(x, ..., type = c("tail", "central"), weights = NULL, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, sim_test = FALSE, no_sim_test = 1000, col_sim_test = gray(0.7), alpha_sim_test = 0.1, seed_test = 1234) model_cent_bucket(x, ..., type = c("tail", "central"), weights = NULL, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, sim_test = FALSE, no_sim_test = 1000, col_sim_test = gray(0.7), alpha_sim_test = 0.1, seed_test = 1234) centile_bucket_wrap(x, ..., type = c("tail", "central"), weights = NULL, xvar = NULL, n_inter = 4, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, check_overlap_text = FALSE, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, sim_test = FALSE, no_sim_test = 1000, col_sim_test = gray(0.7), alpha_sim_test = 0.1, seed_test = 1234)
x |
x should be a continuous vector of a GAMLSS fitted model. |
... |
for more that one continuous vectors or fitted models |
type |
whether "tail" of "central" skewness and kurtosis |
weights |
if priors weights are needed |
no_bootstrap |
the number of bootstrap samples for the cloud around the point of skewness and kurtosis. |
col_bootstrap |
The colour of the bootstrap samples |
alpha_bootstrap |
The transparency parameter of the bootstrap samples. |
text_to_show |
what text to show in the plots, default the names of vectors or models |
cex_text |
the character size of the text |
col_text |
the colour of the text |
colour_bucket |
whether colour or gray lines in the bucket |
line_width |
the line width |
sim_test |
whether to Monde Carlo simulation is needed to check the null hypothesis that there is no centile skewness and transformed centile kurtosis in the sample. |
no_sim_test |
The number of simulation for the test |
col_sim_test |
the colour used for displaying the Monde Carlo test values |
alpha_sim_test |
The transparency parameter of the Monde Carlo samples. |
seed_test |
A seed value for the Monde Carlo simulation. |
xvar |
the x term |
n_inter |
how many intervals needed |
check_overlap_text |
whether to check overlapping text |
More details about centile bucket plots is given in De Bastiani et al. (2022)
A plot displaying the centile skewness and transformed centile kurtosis of the sample or residual of a model.
The bucket plot provides an additional residual diagnostic tool that can be used for fitted model checking, alongside other diagnostic tools, for example worm plots, and Q (and Z) statistics.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
De Bastiani, F., Stasinopoulos, D. M., Rigby, R. A., Heller, G. Z., and Lucas A. (2022) Bucket Plot: A Visual Tool for Skewness and Kurtosis Comparisons. To be published.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/9780429298547 An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stasinopoulos, M. D., Rigby, R. A., and De Bastiani F., (2018) GAMLSS: a distributional regression approach, Statistical Modelling, Vol. 18, pp, 248-273, SAGE Publications Sage India: New Delhi, India.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
m1 <- gamlss(R~pb(Fl)+pb(A), data=rent, family=GA) centile_bucket(m1) centile_bucket_wrap(m1, xvar=rent$A)
m1 <- gamlss(R~pb(Fl)+pb(A), data=rent, family=GA) centile_bucket(m1) centile_bucket_wrap(m1, xvar=rent$A)
The function family_pdf()
takes a GAMLSS family distribution and plots different pdf's according to the specified parameters.
The function fitted_pdf()
takes a gamlss fitted object and plots the fitted distributions for specified observations.
The function fitted_pdf_data()
it does the same as fitted_pdf()
but it adds also the observation values as grey vertical lines.
The function predict_pdf()
takes a fitted object and test data and plots the predictive pdf's.
family_pdf(family = NO(), mu = NULL, sigma = NULL, nu = NULL, tau = NULL, title, from = 0, to = 10, no.points = 201, alpha = 0.4, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, size.line = 0.2, ...) fitted_pdf(model, obs, title, from = 0, to = 10, no.points = 201, alpha = 0.4, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, size.line = 0.2, ...) fitted_pdf_data(model, obs, from, to, ...) predict_pdf(model, newdata, title, from = 0, to = 10, no.points = 201, alpha = 0.4, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, size.line = 0.2, ...)
family_pdf(family = NO(), mu = NULL, sigma = NULL, nu = NULL, tau = NULL, title, from = 0, to = 10, no.points = 201, alpha = 0.4, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, size.line = 0.2, ...) fitted_pdf(model, obs, title, from = 0, to = 10, no.points = 201, alpha = 0.4, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, size.line = 0.2, ...) fitted_pdf_data(model, obs, from, to, ...) predict_pdf(model, newdata, title, from = 0, to = 10, no.points = 201, alpha = 0.4, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, size.line = 0.2, ...)
family |
A GAMLSS family |
model |
A GAMLSS fitted model |
obs |
observations to plot fitted distributions |
newdata |
for test data |
mu |
the |
sigma |
the |
nu |
the |
tau |
the |
title |
a diferent title for the default |
from |
minimum value for the response |
to |
maximum value for the response |
no.points |
number of points (relevant for continuous responses) |
alpha |
trasparency factor |
col.fill |
the colour pallet default is |
size.seqment |
for discrete responses the size of the bars |
plot.point |
for discrete responses whether to put poits on the top of the bars |
size.point |
for discrete responses |
plot.line |
for discrete responses whether to joint the bars with lines |
size.line |
for discrete responses the size of the joining lines |
... |
for extra argumnets |
The functions family_pdf()
and fitted_pdf()
are ggplot version of the function pdf.plot()
used to plot fitted distributions of GAMLSS family at specified observation values. Note that the range of the response has to be specified using the argument from
to
.
For discrete fitted distributions maybe increase the value of alpha
for clearer plot.
For binomial type of data (discrete response with upper limit) the function family_pdf()
takes the argument to
as the binomial denominator,
For fitted model with binomial type responses the function fitted_pdf()
takes the binomial denominator form the fitted model and set the argument to
to the maximum of those binomial denominators.
Creates a plot
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
################################### # function fitted_pdf # continuous variabe a1 <- gamlss(y~pb(x),sigma.fo=~pb(x), data=abdom, family=LO) fitted_pdf(a1, obs=c(10,15,20), from=30, to=100) # count data p1 <- gamlss(y~pb(x)+qrt, data=aids, family=NBI) fitted_pdf(p1, obs=c(10:15), from=25, to=130, alpha=.9) # binomial type h<-gamlss(y~ward+loglos+year, sigma.formula=~year+ward, family=BB, data=aep) fitted_pdf(h, obs=c(10:15), alpha=.9) ################################### # function predict_pdf predict_pdf(a1, newdata=abdom[10:20, ], from=30, to=100) # count data predict_pdf(p1, newdata=aids[10:15, ], from=30, to=150) # binomial predict_pdf(h, newdata=aep[10:15, ], from=0, to=20) ################################### # function family_pdf # continuous family_pdf(from=-5,to=5, mu=0, sigma=c(.5,1,2)) # count data family_pdf(NBI, to=15, mu=1, sigma=c(.5,1,2), alpha=.9, size.seqment = 3) # binomial type family_pdf(BB, to=15, mu=.5, sigma=c(.5,1,2), alpha=.9, , size.seqment = 3)
################################### # function fitted_pdf # continuous variabe a1 <- gamlss(y~pb(x),sigma.fo=~pb(x), data=abdom, family=LO) fitted_pdf(a1, obs=c(10,15,20), from=30, to=100) # count data p1 <- gamlss(y~pb(x)+qrt, data=aids, family=NBI) fitted_pdf(p1, obs=c(10:15), from=25, to=130, alpha=.9) # binomial type h<-gamlss(y~ward+loglos+year, sigma.formula=~year+ward, family=BB, data=aep) fitted_pdf(h, obs=c(10:15), alpha=.9) ################################### # function predict_pdf predict_pdf(a1, newdata=abdom[10:20, ], from=30, to=100) # count data predict_pdf(p1, newdata=aids[10:15, ], from=30, to=150) # binomial predict_pdf(h, newdata=aep[10:15, ], from=0, to=20) ################################### # function family_pdf # continuous family_pdf(from=-5,to=5, mu=0, sigma=c(.5,1,2)) # count data family_pdf(NBI, to=15, mu=1, sigma=c(.5,1,2), alpha=.9, size.seqment = 3) # binomial type family_pdf(BB, to=15, mu=.5, sigma=c(.5,1,2), alpha=.9, , size.seqment = 3)
The function fit_PB()
fits a P-spline univariate smoother [Eilers and Marx (1996)] to y
against the x
with prior weights weights
.
fit_PB(x, y, weights, data, xmin, xmax, nseg = 20, lambda = 10, order = 2, degree = 3, max.df = 20, ylim, plot = FALSE, col.ribbon = "pink")
fit_PB(x, y, weights, data, xmin, xmax, nseg = 20, lambda = 10, order = 2, degree = 3, max.df = 20, ylim, plot = FALSE, col.ribbon = "pink")
x |
the explanatory variable |
y |
the response |
weights |
possible prior weights (set to one by default) |
data |
the data frame where |
xmin |
the |
xmax |
the |
nseg |
the number of knots |
lambda |
the smotthing parameter |
order |
the ordr of the difference |
degree |
the degree of the piewise polynonmial |
max.df |
the maximum allowed degress of freedom |
ylim |
the |
plot |
whether to plot the results |
col.ribbon |
the color in the se of the fitted values |
A object Psplines
is produced with methods print()
, coef()
deviance()
, fitted()
, predict()
and resid().
The functionfit_PB()
is an engine for getting the maximal correlation between two continuous variables. It can be also
used on its own as a smoother.
Mikis Stasinopoulos
Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with comments and rejoinder). Statist. Sci, 11, 89-121.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/9780429298547.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
ACE
data(abdom) m1 <- fit_PB(x,y, data=abdom)
data(abdom) m1 <- fit_PB(x,y, data=abdom)
The function family_cdf()
takes a GAMLSS family distribution and plots different pdf's according to the specified parameters.
The function fitted_cdf()
takes a gamlss fitted object and plots the fitted distributions for specified observations.
The function fitted_cdf_data()
is similat to fitted_cdf()
but also adds the data points as gray vertical lines.
The function predict_pdf()
(NOT IMPLEMENTED YET) takes a fitted object and test data and plots the predictive cdf's.
fitted_cdf(model, obs, title, from = 0, to = 10, no.points = 201, alpha = 1, size.line = 1.2, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, size.point = 1, plot.line = TRUE, size.line.disc = 0.2, lower.tail = TRUE, ...) fitted_cdf_data(model, obs, from, to, ...) predict_cdf(model, newdata, title, from = 0, to = 10, no.points = 201, alpha = 0.4, size.line = 1.2, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, size.line.disc = 0.2, lower.tail = TRUE, ...) family_cdf(family = NO(), mu = NULL, sigma = NULL, nu = NULL, tau = NULL, title, from = 0, to = 10, no.points = 201, alpha = 0.4, size.line = 1.2, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, lower.tail = TRUE, ...)
fitted_cdf(model, obs, title, from = 0, to = 10, no.points = 201, alpha = 1, size.line = 1.2, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, size.point = 1, plot.line = TRUE, size.line.disc = 0.2, lower.tail = TRUE, ...) fitted_cdf_data(model, obs, from, to, ...) predict_cdf(model, newdata, title, from = 0, to = 10, no.points = 201, alpha = 0.4, size.line = 1.2, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, size.line.disc = 0.2, lower.tail = TRUE, ...) family_cdf(family = NO(), mu = NULL, sigma = NULL, nu = NULL, tau = NULL, title, from = 0, to = 10, no.points = 201, alpha = 0.4, size.line = 1.2, col.fill = hcl.colors(lobs, palette = "viridis"), size.seqment = 1.5, plot.point = TRUE, size.point = 1, plot.line = TRUE, lower.tail = TRUE, ...)
family |
A GAMLSS family |
model |
A GAMLSS fitted model |
obs |
observations to plot fitted distributions |
newdata |
for test data |
mu |
the |
sigma |
the |
nu |
the |
tau |
the |
title |
a diferent title for the default |
from |
minimum value for the response |
to |
maximum value for the response |
no.points |
number of points (relevant for continuous responses) |
alpha |
trasparency factor |
col.fill |
the colour pallet default is |
size.seqment |
for discrete responses the size of the bars |
plot.point |
for discrete responses whether to put poits on the top of the bars |
size.point |
for discrete responses |
plot.line |
for discrete responses whether to joint the bars with lines |
size.line.disc |
for discrete responses the size of the joining lines |
size.line |
The size of the lines |
lower.tail |
if |
... |
for extra argumnets |
The functions family_cdf()
, fitted_cdf()
, and predict_cdf()
are function to plot cdf's for a gamlss.family
, fitted gamlss
model or predictive gamlss
model, respectively.
For discrete fitted distributions maybe increase the value of alpha
for clearer plot.
For binomial type of data (discrete response with upper limit) the function family_cdf()
takes the argument to
as the binomial denominator,
For fitted model with binomial type responses the function fitted_cdf()
takes the binomial denominator form the fitted model and set the argument to
to the maximum of those binomial denominators.
Creates a plot
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
# function fitted_cdf # continuous variabe a1 <- gamlss(y~pb(x),sigma.fo=~pb(x), data=abdom, family=LO) fitted_cdf(a1, obs=c(10,15,20), from=30, to=100) fitted_cdf(a1, obs=c(10,15,20), from=30, to=100, lower.tail=FALSE) # count data p1 <- gamlss(y~pb(x)+qrt, data=aids, family=NBI) fitted_cdf(p1, obs=c(10:15), from=10, to=130, alpha=.9) fitted_cdf(p1, obs=c(10:15), from=10, to=130, alpha=.9, lower.tail=FALSE) # binomial type h<-gamlss(y~ward+loglos+year, sigma.formula=~year+ward, family=BB, data=aep) fitted_cdf(h, obs=c(10:15), alpha=.9) fitted_cdf(h, obs=c(10:15), alpha=.9, lower.tail=FALSE) ################################### # function predict_pdf predict_cdf(a1, newdata=abdom[c(10,15,20), ], from=30, to=100) predict_cdf(a1, newdata=abdom[10:20, ], from=30, to=100, lower.tail=FALSE) # count data predict_cdf(p1, newdata=aids[10:15, ], from=10, to=150) predict_cdf(p1, newdata=aids[10:15, ], from=10, to=150, lower.tail=FALSE) # binomial predict_cdf(h, newdata=aep[10:15, ], from=0, to=20) predict_cdf(h, newdata=aep[10:15, ], from=0, to=20, lower.tail=FALSE) ################################### # function family_cdf # continuous family_cdf(from=-5,to=5, mu=0, sigma=c(.5,1,2)) family_cdf(from=-5,to=5, mu=0, sigma=c(.5,1,2), lower.tail=FALSE) # count data family_cdf(NBI, to=15, mu=1, sigma=c(.5,1,2), alpha=.9, size.seqment = 3) family_cdf(NBI, to=15, mu=1, sigma=c(.5,1,2), alpha=.9, size.seqment = 3, lower.tail=FALSE) # binomial type family_cdf(BB, to=15, mu=.5, sigma=c(.5,1,2), alpha=.9, , size.seqment = 3) family_cdf(BB, to=15, mu=.5, sigma=c(.5,1,2), alpha=.9, , size.seqment = 3, lower.tail=FALSE)
# function fitted_cdf # continuous variabe a1 <- gamlss(y~pb(x),sigma.fo=~pb(x), data=abdom, family=LO) fitted_cdf(a1, obs=c(10,15,20), from=30, to=100) fitted_cdf(a1, obs=c(10,15,20), from=30, to=100, lower.tail=FALSE) # count data p1 <- gamlss(y~pb(x)+qrt, data=aids, family=NBI) fitted_cdf(p1, obs=c(10:15), from=10, to=130, alpha=.9) fitted_cdf(p1, obs=c(10:15), from=10, to=130, alpha=.9, lower.tail=FALSE) # binomial type h<-gamlss(y~ward+loglos+year, sigma.formula=~year+ward, family=BB, data=aep) fitted_cdf(h, obs=c(10:15), alpha=.9) fitted_cdf(h, obs=c(10:15), alpha=.9, lower.tail=FALSE) ################################### # function predict_pdf predict_cdf(a1, newdata=abdom[c(10,15,20), ], from=30, to=100) predict_cdf(a1, newdata=abdom[10:20, ], from=30, to=100, lower.tail=FALSE) # count data predict_cdf(p1, newdata=aids[10:15, ], from=10, to=150) predict_cdf(p1, newdata=aids[10:15, ], from=10, to=150, lower.tail=FALSE) # binomial predict_cdf(h, newdata=aep[10:15, ], from=0, to=20) predict_cdf(h, newdata=aep[10:15, ], from=0, to=20, lower.tail=FALSE) ################################### # function family_cdf # continuous family_cdf(from=-5,to=5, mu=0, sigma=c(.5,1,2)) family_cdf(from=-5,to=5, mu=0, sigma=c(.5,1,2), lower.tail=FALSE) # count data family_cdf(NBI, to=15, mu=1, sigma=c(.5,1,2), alpha=.9, size.seqment = 3) family_cdf(NBI, to=15, mu=1, sigma=c(.5,1,2), alpha=.9, size.seqment = 3, lower.tail=FALSE) # binomial type family_cdf(BB, to=15, mu=.5, sigma=c(.5,1,2), alpha=.9, , size.seqment = 3) family_cdf(BB, to=15, mu=.5, sigma=c(.5,1,2), alpha=.9, , size.seqment = 3, lower.tail=FALSE)
The function fitted_centiles()
plots centiles curves for distributions belonging to the GAMLSS family of distributions. The plot is equivalent to the standard plot of gamlss:::centiles()
without a legend.
The function fitted_centiles_legend()
plots centiles curves for distributions belonging to the GAMLSS family of distributions and it is equivalent to the standard plot of gamlss:::centiles()
with a legend. The function is slower than fitted_centiles()
since in order to plot the legend the data have to expanded.
The function model_centiles()
plots centile curves for more than one model. There is no equivalent plot in the original GAMLSS centile plots but it perform the same function as gamlss:::centiles.com()
which compares centiles from different models.
fitted_centiles(obj, xvar, cent = c(99.4, 98, 90, 75, 50, 25, 10, 2, 0.4), points = TRUE, point.col = "gray", point.size = 1, line.size = 0.8, line.col = hcl.colors(lc, palette = "Dark 2"), line.type = rep(1, length(cent)), xlab = NULL, ylab = NULL, title, ...) fitted_centiles_legend(obj, xvar, cent = c(99.4, 98, 90, 75, 50, 25, 10, 2, 0.4), points = TRUE, point.col = "gray", point.size = 1, line.size = 0.8, line.col = hcl.colors(ncent, palette = "Dark 2"), line.type = rep(1, length(cent)), show.legend = TRUE, save.data = FALSE, title, xlab = NULL, ylab = NULL, ...) model_centiles(obj, ..., cent = c(97, 90, 75, 50, 25, 10, 3), xvar, xlab = "age", points = TRUE, point.col = gray(0.8), point.size = 0.05, line.size = 0.7, line.col = hcl.colors(ncent,palette = "Dark 2"), ncol = 2, nrow = ceiling(nnames/ncol), in.one = FALSE, title)
fitted_centiles(obj, xvar, cent = c(99.4, 98, 90, 75, 50, 25, 10, 2, 0.4), points = TRUE, point.col = "gray", point.size = 1, line.size = 0.8, line.col = hcl.colors(lc, palette = "Dark 2"), line.type = rep(1, length(cent)), xlab = NULL, ylab = NULL, title, ...) fitted_centiles_legend(obj, xvar, cent = c(99.4, 98, 90, 75, 50, 25, 10, 2, 0.4), points = TRUE, point.col = "gray", point.size = 1, line.size = 0.8, line.col = hcl.colors(ncent, palette = "Dark 2"), line.type = rep(1, length(cent)), show.legend = TRUE, save.data = FALSE, title, xlab = NULL, ylab = NULL, ...) model_centiles(obj, ..., cent = c(97, 90, 75, 50, 25, 10, 3), xvar, xlab = "age", points = TRUE, point.col = gray(0.8), point.size = 0.05, line.size = 0.7, line.col = hcl.colors(ncent,palette = "Dark 2"), ncol = 2, nrow = ceiling(nnames/ncol), in.one = FALSE, title)
obj |
a fitted gamlss object |
xvar |
the (unique) explanatory variable |
cent |
a vector with elements the % centile values for which the centile curves have to be evaluated (note that the order is from the highest to the lowest so legend and the plots are maching) |
points |
whether to plot the points ( |
point.col |
the colour of the points |
point.size |
the zize of the points |
line.size |
the sized of the centile lines |
line.col |
the colour of the centile lines |
line.type |
the type of line (different types of lines for each centile are working with |
xlab |
the label of the x-axis variable |
ylab |
the label of the resposnse variable |
in.one |
whether the |
title |
the title if need it otherwise a dfault title is pronted |
show.legend |
whether to show the legend |
save.data |
whether to save the |
nrow |
the number of rows in the |
ncol |
the number of columns in the |
... |
for extra arguments for |
Centiles are calculated using the fitted values in obj
and xvar
must
correspond exactly to the predictor in obj
to plot correctly.
A plot is created
This function is appropriate only when one continuous explanatory variable is fitted in the model
Mikis Stasinopoulos, Bob Rigby and Fernanda de Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
data(abdom) h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCTo, data=abdom) h1 <- gamlss(y~pb(x), sigma.formula=~pb(x), family=LO, data=abdom) fitted_centiles(h) fitted_centiles_legend(h) model_centiles(h, h1)
data(abdom) h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCTo, data=abdom) h1 <- gamlss(y~pb(x), sigma.formula=~pb(x), family=LO, data=abdom) fitted_centiles(h) fitted_centiles_legend(h) model_centiles(h, h1)
There are two plotting function here:
i) fitted_devianceIncr()
plots the fitted model deviance components. This is useful for identifying observations with unusual y-values (given the current fitted distribution).
iii) model_devianceIncr_diff
plots the difference of deviance increments from two fitted GAMLSS model. This function is useful if the GAIC and the residuals contradict each other. For example the GAIC is better for model 1 but the residuals look lot better for model 2. This can happens if the two distributions are better suited to fit different parts of the response distribution i.e. one model fits the center better but the other fits the tail better.
fitted_devianceIncr(obj, plot = TRUE, title, quan.val = 0.99, annotate = TRUE, line.col = "steelblue4", point.col = "darkblue", annot.col = "white", newdata = NULL) model_devianceIncr_diff(model1, model2, against = "index", tol = 20, data, newdata)
fitted_devianceIncr(obj, plot = TRUE, title, quan.val = 0.99, annotate = TRUE, line.col = "steelblue4", point.col = "darkblue", annot.col = "white", newdata = NULL) model_devianceIncr_diff(model1, model2, against = "index", tol = 20, data, newdata)
obj |
a GAMLSS fitted object |
plot |
whether to create just the plot or save also the values with high deviance increment |
title |
a tittle if needed it. |
quan.val |
The quantile values of the deviance increment from which the obsrevrvarion should be identify |
annotate |
whether to plot the quantile values above in the plot. |
line.col |
the colour of the line |
point.col |
the colour of the points |
annot.col |
the colour of the annotation for the deviance increment plot |
model1 |
The first fitted GAMLSS model |
model2 |
The second fitted GAMLSS model |
against |
you can plot the deviance increment an index, the response or an x-variable |
tol |
if the absolute value of deviance increment exceeds the |
data |
The data if can not be found from |
newdata |
evaluates the function in new data |
The functions are diagnostic tools to check unusual observations in the response.
return a plot
Mikis Stasinopulos, Rober Rigby and Fernanda de Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
m1 <- gamlss(R~pb(Fl)+pb(A)+H+loc, data=rent, family=GA ) m2 <- gamlss(R~pb(Fl)+pb(A)+H+loc, data=rent, family=NO ) fitted_devianceIncr(m1) model_devianceIncr_diff(m1,m2, against="Fl")
m1 <- gamlss(R~pb(Fl)+pb(A)+H+loc, data=rent, family=GA ) m2 <- gamlss(R~pb(Fl)+pb(A)+H+loc, data=rent, family=NO ) fitted_devianceIncr(m1) model_devianceIncr_diff(m1,m2, against="Fl")
This is plot of the "linear" leverage of a GAMLSS fitted model. By linear we mean the leverage (hat-values) we would have obtain in all the explanatory variables for all distribution parameters where put together and used to fit a linear model to the response. The "linear" leverage is them the hat-values obtained by fitting this simple linear model. Hopefully the "linear" leverage can indicate observations with extreme values in the x's. Note that observations with hight linear leverage may not be influential in the GAMLSS fitting especially if the x-variables are fitted using smoothers.
fitted_leverage(obj, plot = TRUE, title, quan.val = 0.99, annotate = TRUE, line.col = "steelblue4", point.col = "steelblue4", annot.col = "darkred")
fitted_leverage(obj, plot = TRUE, title, quan.val = 0.99, annotate = TRUE, line.col = "steelblue4", point.col = "steelblue4", annot.col = "darkred")
obj |
A GAMLSS fitted model |
plot |
whether to plot ot not |
title |
for different title than the default |
quan.val |
which quantile value of the leverage should be taked to indicate the observation values |
annotate |
whether to annotate the extreme levarages |
line.col |
the colour of the lines |
point.col |
the colout of the points |
annot.col |
the colour used for annotation |
Returns a plot of the linear leverage against index.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
m1 <- gamlss(R~pb(Fl)+pb(A)+loc+H, data=rent, family=GA) fitted_leverage(m1)
m1 <- gamlss(R~pb(Fl)+pb(A)+loc+H, data=rent, family=GA) fitted_leverage(m1)
The function fitted_terms()
is doing what the function term.plot()
is doing for GAMLSS models but it uses ggplot2
package.
The function pe_terms()
is synonymous to fitted_terms()
in the package gamlss.
fitted_terms(object, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, data = NULL, terms = NULL, envir = environment(formula(object)), partial = FALSE, rug = FALSE, rug.sides = "b", rug.col = "gray", alpha = 0.2, ylim = c("common", "free"), xlabs = NULL, ylabs = NULL, main = NULL, term.col = "darkred", resid.col = "lightblue", resid.alpha = 0.8, resid.size = 1, nrow = NULL, ncol = NULL, plots.per.page = 9, one.by.one = FALSE, surface.gam = FALSE, polys = NULL, polys.scheme = "topo", col.ribbon = "darksalmon", col.shaded = "gray", ...) pe_terms(object, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, data = NULL, terms = NULL, envir = environment(formula(object)), partial = FALSE, rug = FALSE, rug.sides = "b", rug.col = "gray", alpha = 0.2, ylim = c("common", "free"), xlabs = NULL, ylabs = NULL, main = NULL, term.col = "darkred", resid.col = "lightblue", resid.alpha = 0.8, resid.size = 1, nrow = NULL, ncol = NULL, plots.per.page = 9, one.by.one = FALSE, surface.gam = FALSE, polys = NULL, polys.scheme = "topo", col.ribbon = "darksalmon", col.shaded = "gray", ...)
fitted_terms(object, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, data = NULL, terms = NULL, envir = environment(formula(object)), partial = FALSE, rug = FALSE, rug.sides = "b", rug.col = "gray", alpha = 0.2, ylim = c("common", "free"), xlabs = NULL, ylabs = NULL, main = NULL, term.col = "darkred", resid.col = "lightblue", resid.alpha = 0.8, resid.size = 1, nrow = NULL, ncol = NULL, plots.per.page = 9, one.by.one = FALSE, surface.gam = FALSE, polys = NULL, polys.scheme = "topo", col.ribbon = "darksalmon", col.shaded = "gray", ...) pe_terms(object, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, data = NULL, terms = NULL, envir = environment(formula(object)), partial = FALSE, rug = FALSE, rug.sides = "b", rug.col = "gray", alpha = 0.2, ylim = c("common", "free"), xlabs = NULL, ylabs = NULL, main = NULL, term.col = "darkred", resid.col = "lightblue", resid.alpha = 0.8, resid.size = 1, nrow = NULL, ncol = NULL, plots.per.page = 9, one.by.one = FALSE, surface.gam = FALSE, polys = NULL, polys.scheme = "topo", col.ribbon = "darksalmon", col.shaded = "gray", ...)
object |
a gamlss fitted model |
what |
which distribution parameters, i.e. "mu" |
parameter |
which distribution parameters (equivalent to |
data |
data frame in which variables in |
terms |
which terms to plot (default NULL means all terms); a vector passed to lpred(..., type = "terms", terms =*) |
envir |
environment in which variables in |
partial |
logical; should partial residuals be plotted? |
rug |
add rug plots to the axes |
rug.sides |
which side the rug "b"=bottom |
rug.col |
the colour for the rug |
alpha |
the alpha for the shade |
ylim |
there are two options here a) "common" and b) "free". The "common"" option plots all figures with the same ylim range and therefore allows the viewer to check the relative contribution of each terms compate to the rest. In the ‘free’ option the limits are computed for each plot seperatly. |
xlabs |
the x label |
ylabs |
the y label |
main |
title NOT WORKING |
term.col |
the colour of the line for term |
resid.col |
the colour of the partial residuals |
resid.alpha |
The alpha for the partial residuals |
resid.size |
the size of the partial residuals |
nrow |
the number or rows in a mupliple plot |
ncol |
the number of rows in a mupliple plot |
plots.per.page |
the number of plots per page in multiple plots |
one.by.one |
whether to plot the terms one by one |
surface.gam |
whether to use surface plot if a ga() term is fitted |
polys |
for GRMF models |
polys.scheme |
The polygone information file for MRF models |
col.ribbon |
he colour of the ribbon |
col.shaded |
he colour of the shaded area |
... |
for extra argument |
A multiple plot
Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
data(aids) a <- gamlss(y ~ pb(x) + qrt, data = aids, family = NBI) fitted_terms(a, pages = 1)
data(aids) a <- gamlss(y ~ pb(x) + qrt, data = aids, family = NBI) fitted_terms(a, pages = 1)
This function helps to plot density estimates created by the histSmo()
function.
histSmo_plot(x, col_fill_bar = gray(0.5), col_bar = "pink", col_line = "darkblue", width_line = 1, title, xlabel)
histSmo_plot(x, col_fill_bar = gray(0.5), col_bar = "pink", col_line = "darkblue", width_line = 1, title, xlabel)
x |
a |
col_fill_bar |
The fill colour of the bars |
col_bar |
the colour of the border of thebars |
col_line |
the colour of the lines |
width_line |
the width of the lines |
title |
title if needed |
xlabel |
x axis lable if needed. |
This function supports histSmo()
.
A plot
Mikis Stasinopulos, Rober Rigby and Fernanda de Bastiani
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
a1 <-histSmo(abdom$y) gg1 <-histSmo_plot(a1) gg1
a1 <-histSmo(abdom$y) gg1 <-histSmo_plot(a1) gg1
The function model_GAIC()
is similar to the function GAIC.scaled()
of the package gamlss. It produces, [for a given set of different fitted models or for a table produced by chooseDist()
], the scaled Akaike values (see Burnham and Anderson (2002) section 2.9 for a similar concept of the GAIC weights. The plot of the GAIC's should not be interpreted as posterior probabilities of models given the data but can be used for model selection purpose since they produce a scaled ranking of the model using their relative importance i.e. from the worst to the best model.
The function model_GAIC_lollipop()
is almost identical to model_GAIC()
but the result is a lollipop plot.
model_GAIC(object, ..., k = 2, c = FALSE, plot = TRUE, which = 1, diff.dev = 1000, text.to.show = NULL, col = "rosybrown", width = 0.9, horiz = TRUE, scale = c("[0,1]","[max,min]"), title) model_GAIC_lollipop(object, ..., k = 2, c = FALSE, plot = TRUE, which = 1, diff.dev = 1000, text.to.show = NULL, col = "skyblue", col.point = "blue", pch.point = 19, width = 0.9, horiz = TRUE, scale = c("[0,1]", "[max,min]"), order.val = TRUE, title) model_TD(..., newdata, plot = TRUE, text.to.show = NULL, col = "rosybrown", diff.TD = 1000, width = 0.9, horiz = TRUE, scale = c("[0,1]", "[min,max]"), title) model_TD_lollipop(..., newdata, plot = TRUE, diff.TD = 1000, text.to.show = NULL, col = "skyblue", col.point = "blue", pch.point = 19, width = 0.9, horiz = TRUE, scale = c("[0,1]", "[min,max]"), order.val = TRUE, title)
model_GAIC(object, ..., k = 2, c = FALSE, plot = TRUE, which = 1, diff.dev = 1000, text.to.show = NULL, col = "rosybrown", width = 0.9, horiz = TRUE, scale = c("[0,1]","[max,min]"), title) model_GAIC_lollipop(object, ..., k = 2, c = FALSE, plot = TRUE, which = 1, diff.dev = 1000, text.to.show = NULL, col = "skyblue", col.point = "blue", pch.point = 19, width = 0.9, horiz = TRUE, scale = c("[0,1]", "[max,min]"), order.val = TRUE, title) model_TD(..., newdata, plot = TRUE, text.to.show = NULL, col = "rosybrown", diff.TD = 1000, width = 0.9, horiz = TRUE, scale = c("[0,1]", "[min,max]"), title) model_TD_lollipop(..., newdata, plot = TRUE, diff.TD = 1000, text.to.show = NULL, col = "skyblue", col.point = "blue", pch.point = 19, width = 0.9, horiz = TRUE, scale = c("[0,1]", "[min,max]"), order.val = TRUE, title)
object |
a set of |
... |
|
newdata |
the test data |
k |
the penalty with default k=2 |
c |
whether the corrected AIC, i.e. AICc, should be used, note that it applies only when |
plot |
whether to plot with default equal |
which |
which column of GAIC table to plot |
diff.dev , diff.TD
|
this argument mainly applies only a matrix table produced by |
text.to.show |
if NULL, |
col |
The colour of the bars (or lines. in the lollipop) |
col.point |
The colour of the points in the lollipop |
pch.point |
The points character in the lollipop |
width |
the width of the bars |
horiz |
whether to plot the bars horizontally (default) or vertically |
scale |
the scale of the plot, |
title |
if different title is needed |
order.val |
whether to order the models from the best to the worst |
The option allow the AIC to be plotted from worst to best on a
scale using the formula i.e.
where the
and
are the worst and best AIC, respectively, and
is the AIC of the current model. If the option
scale
is set to[max,min]
the difference is plotted.
It returns a bar plot using package ggplot2.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Burnham K. P. and Anderson D. R (2002). Model Selection and Multimodel Inference A Practical Information-Theoretic Approach, Second Edition, Springer-Verlag New York, Inc.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
data(abdom) m1 <- gamlss(y~x, family=NO, data=abdom) m2 <- gamlss(y~x, sigma.fo=~x, family=NO, data=abdom) m3 <- gamlss(y~pb(x), sigma.fo=~x, family=NO, data=abdom) m4 <- gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom) model_GAIC(m1,m2, m3, m4) MT <- chooseDist(m3) model_GAIC(MT) model_GAIC(MT, which=2) model_GAIC_lollipop(m1,m2, m3, m4)
data(abdom) m1 <- gamlss(y~x, family=NO, data=abdom) m2 <- gamlss(y~x, sigma.fo=~x, family=NO, data=abdom) m3 <- gamlss(y~pb(x), sigma.fo=~x, family=NO, data=abdom) m4 <- gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom) model_GAIC(m1,m2, m3, m4) MT <- chooseDist(m3) model_GAIC(MT) model_GAIC(MT, which=2) model_GAIC_lollipop(m1,m2, m3, m4)
The function model_pca()
plots several GAMLSS residuals using Principal Component Analysis.
model_pca(obj, ..., scale = TRUE, arrow_size = 1.5)
model_pca(obj, ..., scale = TRUE, arrow_size = 1.5)
obj |
A gamlss object |
... |
for extra GAMLSS models |
scale |
whether to scale the residuals |
arrow_size |
the arrow sizw in the biplot |
The function model_pca()
plot a biplot()
plot of the residuals from different models. It uses Principal Component Analysis in the residuals of different models and plots the resuls.
A biplot of the first two components is plotted.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
m1 <- gamlss(y~x, data=abdom) m2 <- gamlss(y~pb(x), data=abdom) m3 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom) model_pca(m1,m2,m3)
m1 <- gamlss(y~x, data=abdom) m2 <- gamlss(y~pb(x), data=abdom) m3 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom) model_pca(m1,m2,m3)
A bucket plot is a graphical way to check the skewness and kurtosis of a continuous variable or the residuals of a fitted GAMLSS model. It plots the transformed moment skewness and transformed moment kurtosis of the variable (or residuals) together with a cloud of points obtained using a non-parametric bootstrap from the original variable (or residuals). It also provides a graphical way of performing the Jarque-Bera test (JarqueandBera,1980).
There are two function here:
i) moment_bucket()
for a single bucket plot. Note that model_mom_bucket()
and moment_bucket()
are synonymous.
ii) moment_bucket_wrap()
for multiple bucket plots cut according to terms in the model.
moment_bucket(x, ..., weights = NULL, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, col_JB_test = gray(.7), alpha_JB_test = .1) model_mom_bucket(x, ..., weights = NULL, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, col_JB_test = gray(.7), alpha_JB_test = .1) moment_bucket_wrap(x, ..., weights = NULL, xvar = NULL, n_inter = 4, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, check_overlap_text = FALSE, cex_text = 5, col_text = "black", colour_bucket = FALSE, col_JB_test = gray(.7), alpha_JB_test = .1)
moment_bucket(x, ..., weights = NULL, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, col_JB_test = gray(.7), alpha_JB_test = .1) model_mom_bucket(x, ..., weights = NULL, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, cex_text = 5, col_text = "black", colour_bucket = FALSE, line_width = 0.5, col_JB_test = gray(.7), alpha_JB_test = .1) moment_bucket_wrap(x, ..., weights = NULL, xvar = NULL, n_inter = 4, no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj, palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL, check_overlap_text = FALSE, cex_text = 5, col_text = "black", colour_bucket = FALSE, col_JB_test = gray(.7), alpha_JB_test = .1)
x |
x should be a continuous vector of a GAMLSS fitted model. |
... |
this for more that one continuous vectors or fitted models |
weights |
if priors weights are needed |
no_bootstrap |
the number of bootstrap samples for the cloud around the point of skewness and kurtosis. |
col_bootstrap |
The colour of the bootstrap samples |
alpha_bootstrap |
The transparency parameter of the bootstrap samples. |
text_to_show |
what text to show in the plots, default the names of vectors ot models |
cex_text |
the character size of the text |
col_text |
the colour of the text |
colour_bucket |
whether colour or gray lines in the bucket |
line_width |
the line width |
xvar |
the x term |
n_inter |
how many intervals needed |
check_overlap_text |
whether to check overlapping text |
col_JB_test |
the colour for the Jarque-Bera test |
alpha_JB_test |
the transparency constant for the Jarque-Bera test |
A plot displaying the transformed moment skewness and transformed moment kurtosis of the sample or residual of a model.
The bucket plot provides an additional residual diagnostic tool that can be used for fitted model checking, alongside other diagnostic tools, for example worm plots, and Q (and Z) statistics.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
De Bastiani, F., Stasinopoulos, D. M., Rigby, R. A., Heller, G. Z., and Lucas A. (2022) Bucket Plot: A Visual Tool for Skewness and Kurtosis Comparisons. To be published.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/9780429298547 An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stasinopoulos, M. D., Rigby, R. A., and De Bastiani F., (2018) GAMLSS: a distributional regression approach, Statistical Modelling, Vol. 18, pp, 248-273, SAGE Publications Sage India: New Delhi, India.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
m1 <- gamlss(R~pb(Fl)+pb(A), data=rent, family=GA) moment_bucket(m1) moment_bucket_wrap(m1, xvar=rent$A)
m1 <- gamlss(R~pb(Fl)+pb(A), data=rent, family=GA) moment_bucket(m1) moment_bucket_wrap(m1, xvar=rent$A)
The functions plot the moment transformed skewness and moment transformed kurtosis of five important 4-parameter distributions in GAMLSS.
moment_gray_half(legend = FALSE) moment_gray_both(line_width = 1) moment_colour_half(legend = TRUE) moment_colour_both(legend = TRUE, line_width = 1) centile_colour_half(type = c("tail", "central"), legend = TRUE, line_width = 1) centile_colour_both(type = c("tail", "central"), legend = TRUE, line_width = 1) centile_gray_both(type = c("tail", "central"), legend = TRUE, line_width = 0.5)
moment_gray_half(legend = FALSE) moment_gray_both(line_width = 1) moment_colour_half(legend = TRUE) moment_colour_both(legend = TRUE, line_width = 1) centile_colour_half(type = c("tail", "central"), legend = TRUE, line_width = 1) centile_colour_both(type = c("tail", "central"), legend = TRUE, line_width = 1) centile_gray_both(type = c("tail", "central"), legend = TRUE, line_width = 0.5)
legend |
whether legend is required |
line_width |
line width |
type |
whether to plot ‘tail’ or ‘central’ skewness and kurtosis. |
The functions are described in Rigby et al (2019)
A plot is created.
The functions are use by the bucket plot function model_mom_bucket()
to create the background of the bucket plots.
Mikis Stasinopoulos, Bob Rigby and Fernanda de Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/9780429298547 An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
moment_gray_half() moment_gray_both() moment_colour_half() moment_colour_both() centile_colour_both() centile_gray_both() centile_colour_half()
moment_gray_half() moment_gray_both() moment_colour_half() moment_colour_both() centile_colour_both() centile_gray_both() centile_colour_half()
This function is similar to the function plot.PCR()
which is used to plot the path of a fitted principal componet regression model, fitted using the function fitPCR()
of the package gamlss.foreach.
pcr_coef_path(x, legend=FALSE, plot=TRUE) pcr_path(x, parameter = c("mu", "sigma", "nu", "tau"), legend = FALSE, plot = TRUE)
pcr_coef_path(x, legend=FALSE, plot=TRUE) pcr_path(x, parameter = c("mu", "sigma", "nu", "tau"), legend = FALSE, plot = TRUE)
x |
a fitted PCR object (or a fitted GAMLSS object for function |
legend |
whether legent is needed |
plot |
whether to plot the path |
parameter |
which GAMLSS parameter, between "mu", "sigma", "nu", "tau" |
A gg-plot.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
library(gamlss.foreach) library(glmnet) library(ggplot2) data(QuickStartExample) attach(QuickStartExample) hist(y, main="(a)") if (is.null(rownames(x))) colnames(x) <- paste0("X", seq(1:dim(x)[2])) # fitting MM<- fitPCR(x,y, k=log(100)) pp<-pcr_coef_path(MM) pp+ ggplot2::geom_vline(xintercept = MM$pc, colour = "gray") # using gamlss m1 <- gamlss(y~pcr(x=x)) pcr_path(m1)
library(gamlss.foreach) library(glmnet) library(ggplot2) data(QuickStartExample) attach(QuickStartExample) hist(y, main="(a)") if (is.null(rownames(x))) colnames(x) <- paste0("X", seq(1:dim(x)[2])) # fitting MM<- fitPCR(x,y, k=log(100)) pp<-pcr_coef_path(MM) pp+ ggplot2::geom_vline(xintercept = MM$pc, colour = "gray") # using gamlss m1 <- gamlss(y~pcr(x=x)) pcr_path(m1)
The function pe_param()
is similar to the function getPEF()
of the gamlss package. It plot the partial effect that a particular term has one of the parameters of the distribution or its predictor eta
.
The function pe2_param()
is build for partial effects from two terms and it is suitable to display first order interactions.
pe_param(obj = NULL, term = NULL, data = NULL, n.points = 100, parameter = c("mu", "sigma", "nu", "tau"), type = c("parameter", "eta"), scenario = list(), how = c("median", "last", "fixed"), col = "darkblue", linewidth = 1.3, name.obj = NULL, rug.plot = TRUE, rug.col = "gray", rug.size = 0.5, data.plot = FALSE, data.col = "lightblue", data.size = 0.1, factor.size = 15, data.alpha = 0.9, bins = 30, filled = FALSE, ylim = NULL, title) pe_1_param(obj = NULL, term = NULL, data = NULL, n.points = 100, parameter = c("mu", "sigma", "nu", "tau"), type = c("parameter", "eta"), how = c("median", "last", "fixed"), scale.from = c("mean", "median", "none"), scenario = list(), col = "darkblue", linewidth = 1.3, name.obj = NULL, data.plot = FALSE, data.col = "lightblue",data.size = 0.1, data.alpha = 0.9, rug.plot = TRUE, rug.col = "gray", rug.size = 0.5, factor.size = 15, ylim = NULL, title) pe_2_param(obj = NULL, terms = NULL, data = NULL, n.points = 100, parameter = c("mu", "sigma", "nu", "tau"), type = c("parameter", "eta"), how = c("median", "last", "fixed"), scenario = list(), col = "darkblue", linewidth = 1.3, data.plot = TRUE, data.col = "lightblue", data.size = 0.1, data.alpha = 0.9,bins = 30, filled = FALSE, name.obj = NULL, title) pe_param_grid(model, terms, maxcol = 2, maxrow = 3, ylim=NULL, ...)
pe_param(obj = NULL, term = NULL, data = NULL, n.points = 100, parameter = c("mu", "sigma", "nu", "tau"), type = c("parameter", "eta"), scenario = list(), how = c("median", "last", "fixed"), col = "darkblue", linewidth = 1.3, name.obj = NULL, rug.plot = TRUE, rug.col = "gray", rug.size = 0.5, data.plot = FALSE, data.col = "lightblue", data.size = 0.1, factor.size = 15, data.alpha = 0.9, bins = 30, filled = FALSE, ylim = NULL, title) pe_1_param(obj = NULL, term = NULL, data = NULL, n.points = 100, parameter = c("mu", "sigma", "nu", "tau"), type = c("parameter", "eta"), how = c("median", "last", "fixed"), scale.from = c("mean", "median", "none"), scenario = list(), col = "darkblue", linewidth = 1.3, name.obj = NULL, data.plot = FALSE, data.col = "lightblue",data.size = 0.1, data.alpha = 0.9, rug.plot = TRUE, rug.col = "gray", rug.size = 0.5, factor.size = 15, ylim = NULL, title) pe_2_param(obj = NULL, terms = NULL, data = NULL, n.points = 100, parameter = c("mu", "sigma", "nu", "tau"), type = c("parameter", "eta"), how = c("median", "last", "fixed"), scenario = list(), col = "darkblue", linewidth = 1.3, data.plot = TRUE, data.col = "lightblue", data.size = 0.1, data.alpha = 0.9,bins = 30, filled = FALSE, name.obj = NULL, title) pe_param_grid(model, terms, maxcol = 2, maxrow = 3, ylim=NULL, ...)
obj |
a GAMLSS fitted object |
model |
a GAMLSS fitted model |
term |
the model term we want to investigate can be one i.e. "Fl" or two c("Fl", "A") |
terms |
a list of model terms for example
|
data |
the data frame used otherwise it takes it from the fitted model |
n.points |
the number of points for the evaluation of the term |
parameter |
the distribution parameter in which the term is fitted |
type |
here you specify or the distribution parameter i.e |
how |
how to set all the other terms in the model |
scenario |
this can be a list of values for the rest of the terms in the model for the distribution parameter |
plot |
whether to plot the result |
col |
the colour of the partial effect of the term |
linewidth |
the size of the line of partial effect of the term |
bins |
the number of binds for the contour plot |
filled |
whether to display the values in the contour |
title |
the title if different from the default |
name.obj |
this is a way to pass the name of the object |
maxcol |
the maximum columns in the grid plot |
maxrow |
the maximum rowss in the grid plot |
data.plot |
whether to plot the data |
rug.plot |
whether to print the rug bellow the figure |
rug.size |
the size of the rug |
rug.col |
the colour of the rug |
data.col |
the color of the data points |
data.size |
the size of the data points |
data.alpha |
the trnsparance constant of the data points |
factor.size |
the size of the symbol if a factor is plotted |
ylim |
if a common y limit is required |
scale.from |
whethet to substact from the mean the median or from zero |
... |
for passing argument from the function |
The functions pe_param()
and pe_param_grid()
can be used to help the use the interpretation of a GAMLSS model.
The functions pe_param()
provides the partial effect of one or two terms of a specified parameter of the distribution while the rest of the terms in the model are set on specific values or scenarios. The function pe_param()
calls pe_1param()
if the argument terms is one i.e. "Fl" or the function
pe_2param()
if the terms are two i.e. c("Fl"","A").
The pe_param_grid()
plots multiple plots specified by the list used in the term
argument.
Similar functions are
pe_quantile()
and pe_moment()
.
It is plotting the partial effect or is producing the resulting function
Mikis Stasinopulos, Rober Rigby and Fernanda de Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
m1 <- gamlss(R~pb(Fl)+pb(A)+loc+H, data=rent, gamily=GA) pe_param(m1, "A") pe_param(m1, c("Fl","A"), filled=TRUE) pe_param_grid(m1, list(c("Fl","A"), c("H","loc")), filled=TRUE) # the terms are additive no interaction
m1 <- gamlss(R~pb(Fl)+pb(A)+loc+H, data=rent, gamily=GA) pe_param(m1, "A") pe_param(m1, c("Fl","A"), filled=TRUE) pe_param_grid(m1, list(c("Fl","A"), c("H","loc")), filled=TRUE) # the terms are additive no interaction
The function pe_pdf()
plots the partial effect that a specified term has on the distribution of the response.
The function pe_pdf_grid()
plot multiple plots on the same page.
pe_pdf(obj = NULL, term = NULL, from = NULL, to = NULL, y.grid.points = 100, x.grid.points = 10, x.values, data = NULL, scale = NULL, how = c("median", "last"), scenario = list(), linewidth = 0.1, horizontal = TRUE, col.fill = hcl.colors(lqq, palette = "viridis"), alpha = 0.6, xlim = NULL, title) pe_pdf_grid(model, terms, maxcol = 2, maxrow = 3, ...)
pe_pdf(obj = NULL, term = NULL, from = NULL, to = NULL, y.grid.points = 100, x.grid.points = 10, x.values, data = NULL, scale = NULL, how = c("median", "last"), scenario = list(), linewidth = 0.1, horizontal = TRUE, col.fill = hcl.colors(lqq, palette = "viridis"), alpha = 0.6, xlim = NULL, title) pe_pdf_grid(model, terms, maxcol = 2, maxrow = 3, ...)
obj , model
|
A GAMLSS object |
term |
The model term |
terms |
The model terms, more than one for |
from |
start from |
to |
end to |
y.grid.points |
in how many points the pdf should be evaluates |
x.grid.points |
in how namy points the terms should be plotted |
x.values |
possible x values |
data |
The data used for modelling |
scale |
This is a very importnat value for plotting correctly the fitted distrutions. If the defaul values it is not working please try different values |
how |
How to fixed the rest of the variables. For continuous oit takes the median fot factor the level with the highest frequency. |
scenario |
Alternatively scenatio for fixing the values. |
linewidth |
the size of the pdf line |
horizontal |
whether to plot the partial pdf on the x-axis and the x on the y-axix or opposite |
col.fill |
how to fill the pdf body |
alpha |
the transparency factor |
xlim |
the limits for plotting x-axis |
title |
whether to use a different tittle from the default one |
maxcol |
maximum of colomns in the grid for |
maxrow |
maximum of rows on the grid for |
... |
extra argument to be passed form |
The function pe_pdf()
is one of the function design to help the use to interpret the GAMLSS model. Provides the partial effect that one of the continuous terms has on distribution of the response while the rest of the variables in the model are set on specific values or scenarios. Others similar functions are
pe_param()
, pe_moment()
and pe_quantile()
.
A plot of the conditional distribution given the term
Mikis Stasinopulos, Rober Rigby and Fernanda de Bastiani
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
m1 <- gamlss(R~pb(Fl)+pb(A)+loc+H, data=rent, gamily=GA) pe_pdf(m1, "A") pe_pdf(m1, "A") pe_pdf(m1, "A", horizontal=FALSE) pe_pdf_grid(m1, c("Fl", "A", "H", "loc"))
m1 <- gamlss(R~pb(Fl)+pb(A)+loc+H, data=rent, gamily=GA) pe_pdf(m1, "A") pe_pdf(m1, "A") pe_pdf(m1, "A", horizontal=FALSE) pe_pdf_grid(m1, c("Fl", "A", "H", "loc"))
Plotting the profile deviance of a fitted term in GAMLSS
prof_term(model = NULL, criterion = c("GD", "GAIC"), penalty = 2.5, from = NULL, to = NULL, step = NULL, length = 7, xlabel = NULL, plot = TRUE, perc = 95, start.prev = TRUE, line.col = "darkgreen", dash.line.type = 3, dash.line.size = 0.8, text.size = 5, title)
prof_term(model = NULL, criterion = c("GD", "GAIC"), penalty = 2.5, from = NULL, to = NULL, step = NULL, length = 7, xlabel = NULL, plot = TRUE, perc = 95, start.prev = TRUE, line.col = "darkgreen", dash.line.type = 3, dash.line.size = 0.8, text.size = 5, title)
model |
a GAMLSS fitted model |
criterion |
whether Global deviance or GAIC |
penalty |
the penalty k for GAIC |
from |
start from |
to |
finish at |
step |
using step |
length |
if the |
xlabel |
if a x label is required |
plot |
whether tto plot the function |
perc |
what percentage confidence interval is required |
start.prev |
whether to start from the previous fitted model parameters values or not (default is TRUE) |
line.col |
the colour of the plotting line |
dash.line.type |
the type of verical dash line for CI's |
dash.line.size |
The size of the dash lines |
text.size |
the size of text |
title |
the title |
This function is the ggplot2
version of the original prof.term()
function.
creates a plot
Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
data(aids) # fitting a linear model gamlss(y~x+qrt,family=NBI,data=aids) # testing the linear beta parameter mod<-quote(gamlss(y ~ offset(this * x) + qrt, data = aids, family = NBI)) prof_term(mod, from = .06, to=0.13)
data(aids) # fitting a linear model gamlss(y~x+qrt,family=NBI,data=aids) # testing the linear beta parameter mod<-quote(gamlss(y ~ offset(this * x) + qrt, data = aids, family = NBI)) prof_term(mod, from = .06, to=0.13)
The function resid_density()
plots an histogram and a density estimator of the normalised quantile residuals from a fitted GAMLSS model. The function model_density()
plots density estimators of the normalised quantile residuals from more than one fitted GAMLSS models.
resid_density(obj, resid, hist.col = "black", hist.fill = "white", dens.fill = "#FF6666", title) model_density(obj, ..., title)
resid_density(obj, resid, hist.col = "black", hist.fill = "white", dens.fill = "#FF6666", title) model_density(obj, ..., title)
obj |
The function needs a GAMLSS fitted model or |
resid |
any standarised residual |
hist.col |
The colour of the border of the histogram |
hist.fill |
The colout of the hisogram |
dens.fill |
the colour of the desnsity |
title |
A title if needed |
... |
extra GAMLSS models |
This function resid_density()
is a denity plot (similar to of the four plots produded when the plotting function plot.gamlss()
is used within the gamlss package.
I uses plotting function from the ggplot2 package.
A density plot of the residuals is produced.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
data(abdom) a<-gamlss(y~pb(x),family=LO,data=abdom) b<-gamlss(y~pb(x),family=NO,data=abdom) resid_density(a) model_density(a,b)
data(abdom) a<-gamlss(y~pb(x),family=LO,data=abdom) b<-gamlss(y~pb(x),family=NO,data=abdom) resid_density(a) model_density(a,b)
The function resid_dtop()
provides single de-trended transformed Owen's plot, Owen (1995), for a GAMLSS fitted objects or any other residual vector (suitable standardised). This is a diagnostic tool for checking whether the normalised quantile residuals are coming from a normal distribution or not.
This could be true if the horizontal line is within the confidence intervals.
The function resid_ecdf()
provides the empirical cumulative distribution function of the residuals.
The function y_ecdf()
provides the empirical cumulative distribution function of any numerical vector y
.
resid_dtop(obj, resid, type = c("Owen", "JW"), conf.level = c("95", "99"), value = 2, points.col = "steelblue4", check_overlap = TRUE, title, ylim, ...) resid_ecdf(obj, resid, type = c("Owen", "JW"), conf.level = c("95", "99"), value = 2, points.col = "steelblue4", check_overlap = TRUE, show.outliers = TRUE, title, ...) y_ecdf(y, type = c("Owen", "JW"), conf.level = c("95", "99"), value = 2, points.col = "steelblue4", check_overlap = TRUE, show.outliers = FALSE, from, to, title, ...)
resid_dtop(obj, resid, type = c("Owen", "JW"), conf.level = c("95", "99"), value = 2, points.col = "steelblue4", check_overlap = TRUE, title, ylim, ...) resid_ecdf(obj, resid, type = c("Owen", "JW"), conf.level = c("95", "99"), value = 2, points.col = "steelblue4", check_overlap = TRUE, show.outliers = TRUE, title, ...) y_ecdf(y, type = c("Owen", "JW"), conf.level = c("95", "99"), value = 2, points.col = "steelblue4", check_overlap = TRUE, show.outliers = FALSE, from, to, title, ...)
obj |
A GAMLSS fitted model |
resid |
if the object is not specified the residual vector can be given here |
y |
a numeric vector |
type |
whether to use Owen (1995) or Jager and Wellner (2004) approximate formula |
conf.level |
95% (default) or 99% percent confidence interval for the plots |
value |
cut of point for large residuals |
points.col |
the colour of the points in the plot |
check_overlap |
to check for overlap when plotting the observation numbers |
title |
required title |
show.outliers |
whether to shoe the number of an outlier obsrvation |
ylim |
if the y limit should be different from the default max(y)+.1 |
from |
where to start the ecdf |
to |
where to finish the ecdf |
... |
further arguments |
A ggplot is generated
Mikis Stasinopoulos, Bob Rigby and Fernanda de Bastiani
Jager, L. and Wellner, J. A (2004) A new goodness of fit test: the reversed Berk-Jones statistic, University of Washington, Department of Statistics, Technical report 443.
Owen A. B. (1995) Nonparametric Confidence Bands for a Distribution Function. Journal of the American Statistical Association Vol. 90, No 430, pp. 516-521.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, 1-38.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
library(ggplot2) data(abdom) a<-gamlss(y~pb(x),sigma.fo=~pb(x,1),family=LO,data=abdom) resid_dtop(a) resid_ecdf(a)+ stat_function(fun = pNO, args=list(mu=0, sigma=1)) # create a gamma distributed random variable y <- rGA(1000, mu=3, sigma=1) gp<- y_ecdf(y) gp + stat_function(fun = pGA, args=list(mu=3, sigma=1))
library(ggplot2) data(abdom) a<-gamlss(y~pb(x),sigma.fo=~pb(x,1),family=LO,data=abdom) resid_dtop(a) resid_ecdf(a)+ stat_function(fun = pNO, args=list(mu=0, sigma=1)) # create a gamma distributed random variable y <- rGA(1000, mu=3, sigma=1) gp<- y_ecdf(y) gp + stat_function(fun = pGA, args=list(mu=3, sigma=1))
The function resid_index()
is plotting the residuals of a GAMLSS fitted model (or any other suitable standardised residual) against the observation number index.
The function resid_mu()
plots the residuals against fitted values for mu
.
The function resid_median()
plots the residuals against fitted median values.
The function resid_param()
plots the residuals against any of the GAMLSS fitted parameters, mu
, sigma
, nu
, or tau
.
The function resid_quantile()
plots the residuals against any fitted quantile.
The function resid_xvar()
plots the residuals against an explanatory term.
The function resid_plots()
produces a plot similar to the one that the function plot()
produce for a GAMLSS model in package gamlss. This is, four plots: a) resid_index()
(b) resid_mu()
, (c) resid_density()
and (d) resid_qqplot()
.
Residuals above (or below) certain specified value are identified.
resid_index(obj, resid, plot = TRUE, value = 2, title, annotate = TRUE, no.lines = FALSE) resid_mu(obj, resid, plot = TRUE, value = 2, title, annotate = TRUE) resid_median(obj, resid, plot = TRUE, value = 3, title, annotate = TRUE) resid_param(obj, param = c("mu", "sigma", "nu", "tau"), title, line.col = "darkred", point.col = "steelblue4", point.shape = 20) resid_quantile(obj, quantile = 0.5, title, newdata, line.col = "darkred", point.col = "steelblue4", point.shape = 20) resid_plots(obj, theme = c("original", "ts", "new", "ecdf"), value = 3) resid_xvar(obj, xvar, plot = TRUE, value = 2, title, annotate = TRUE)
resid_index(obj, resid, plot = TRUE, value = 2, title, annotate = TRUE, no.lines = FALSE) resid_mu(obj, resid, plot = TRUE, value = 2, title, annotate = TRUE) resid_median(obj, resid, plot = TRUE, value = 3, title, annotate = TRUE) resid_param(obj, param = c("mu", "sigma", "nu", "tau"), title, line.col = "darkred", point.col = "steelblue4", point.shape = 20) resid_quantile(obj, quantile = 0.5, title, newdata, line.col = "darkred", point.col = "steelblue4", point.shape = 20) resid_plots(obj, theme = c("original", "ts", "new", "ecdf"), value = 3) resid_xvar(obj, xvar, plot = TRUE, value = 2, title, annotate = TRUE)
obj |
a GAMLSS object |
resid |
or any other suitable standardised residual vector. |
xvar |
a continuous explanatory variable |
plot |
whether to plot the result |
param |
which GAMLSS parameter |
value |
the cut off value for the identification of very large or very small residuals |
annotate |
whether the threshold annotation should appear or not |
line.col |
the colour of the line |
point.col |
the colour of the points |
point.shape |
the shape of the points |
title |
a title of the plot if needed |
theme |
what type of plots should |
no.lines |
this option allows to hide the horizontal lines so the resulting gg-plot can be used later with say |
newdata |
whether the evaluation should be in newdata or the old data points |
quantile |
which quantile? default the median (0.50). |
A plot of the residuals is returned.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stasinopoulos, M. D., Rigby, R. A., and De Bastiani F., (2018) GAMLSS: a distributional regression approach, Statistical Modelling, Vol. 18, pp, 248-273, SAGE Publications Sage India: New Delhi, India.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
library(ggplot2) data(rent) r1<-gamlss(R~pb(Fl)+pb(A)+H+loc,family=GA,data=rent) resid_index(r1) resid_mu(r1) resid_median(r1) resid_param(r1) resid_quantile(r1) resid_xvar(r1, A) resid_plots(r1) resid_index(r1, no.lines=TRUE)+facet_wrap(~ cut_number(rent$A, 6))
library(ggplot2) data(rent) r1<-gamlss(R~pb(Fl)+pb(A)+H+loc,family=GA,data=rent) resid_index(r1) resid_mu(r1) resid_median(r1) resid_param(r1) resid_quantile(r1) resid_xvar(r1, A) resid_plots(r1) resid_index(r1, no.lines=TRUE)+facet_wrap(~ cut_number(rent$A, 6))
The function resid_qqplot()
produces a single QQ-plot of the residuals from a fitted GAMLSS model or any other model with suitable standardised residuals.
The function add_resid_qqplot()
takes a QQ-plot created by resid_qqplot()
and adds another QQ-plot from a different fitted model.
The function model_resid_qqplots()
takes different fitted models and creates QQ-plots for all fitted models.
resid_qqplot(obj, resid, value = 3, points.col = "steelblue4", line.col = "darkgray", check_overlap = TRUE, title) add_resid_qqplot(gg, obj, value = 3, points.col = "sienna", line.col = "darkgray", check_overlap = TRUE, title) model_qqplot(obj, ..., line.col = "steelblue4", title)
resid_qqplot(obj, resid, value = 3, points.col = "steelblue4", line.col = "darkgray", check_overlap = TRUE, title) add_resid_qqplot(gg, obj, value = 3, points.col = "sienna", line.col = "darkgray", check_overlap = TRUE, title) model_qqplot(obj, ..., line.col = "steelblue4", title)
obj |
A GAMLLS fitted model or |
resid |
any other residual suitable standardised. |
gg |
a ggplot |
value |
A cut off value to identify large or small residuals |
points.col |
the colout of the points in the plot |
line.col |
the colout of the line in the plot |
check_overlap |
if observations are identify this reduvce the cluterring |
title |
a title if needed it |
... |
extra GAMLSS models |
This is a stanard QQ-plot but with the advadance of able to identify large or samll residuals
A QQ-plotbis created
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
data(abdom) a<-gamlss(y~pb(x),family=LO,data=abdom) b<-gamlss(y~pb(x),family=NO,data=abdom) gg <- resid_qqplot(a) add_resid_qqplot(gg, b) model_qqplot(a,b)
data(abdom) a<-gamlss(y~pb(x),family=LO,data=abdom) b<-gamlss(y~pb(x),family=NO,data=abdom) gg <- resid_qqplot(a) add_resid_qqplot(gg, b) model_qqplot(a,b)
The functions resid_symmetry()
and y_symmetry()
plot symmtry plots for residuals and single variable, respectively.
resid_symmetry(model, title) y_symmetry(y, title)
resid_symmetry(model, title) y_symmetry(y, title)
model |
A model which allows the function |
y |
a single variable |
title |
A title for the plot if needed |
The function orders the data (or residuals) and takes the median minus the lower half and plot it against the upper half minus the median.
The symmetry plot is produced.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
y <- rBCT(1000, mu=3, sigma=.1, nu=-1, tau=5) y_hist(y) gg <- y_symmetry(y)
y <- rBCT(1000, mu=3, sigma=.1, nu=-1, tau=5) y_hist(y) gg <- y_symmetry(y)
The function produces worm plot of the residuals of a fitted model. A worm plot is a de-trended normal QQ-plot so departure from normality is highlighted.
The function plot_wp()
it is similar to the gamlss package function wp()
when the argument xvar
is not used.
resid_wp(obj, resid, value = 3, points_col = "steelblue4", poly_col = "darkred", check_overlap = TRUE, title, ylim) model_wp(obj, ..., title) resid_wp_wrap(obj, resid, value = 3, xvar = NULL, n_inter = 4, points_col = "steelblue4", poly_col = "darkred", alpha_bound = 0.1, check_overlap = TRUE, title, ylim) model_wp_wrap(obj, ..., xvar = NULL, value = 3, n_inter = 4, points_col = "steelblue4", alpha_bound = 0.1, check_overlap = TRUE, ylim, title)
resid_wp(obj, resid, value = 3, points_col = "steelblue4", poly_col = "darkred", check_overlap = TRUE, title, ylim) model_wp(obj, ..., title) resid_wp_wrap(obj, resid, value = 3, xvar = NULL, n_inter = 4, points_col = "steelblue4", poly_col = "darkred", alpha_bound = 0.1, check_overlap = TRUE, title, ylim) model_wp_wrap(obj, ..., xvar = NULL, value = 3, n_inter = 4, points_col = "steelblue4", alpha_bound = 0.1, check_overlap = TRUE, ylim, title)
obj |
a GAMLSS fitted object or any other fitted model where the |
resid |
if object is missing this argument can be used to specify the residual vector (again it should a normalised quantile residual vector) |
value |
A cut off point to indicate large residuals, default is |
xvar |
the x term for which the worm plot will be plotted against |
n_inter |
the number of intervals for continuous x-term |
points_col |
the color of the points in the plot |
poly_col |
the colour of the fitted polynomial in the plot |
check_overlap |
to check for overlap when plotting the observation numbers |
alpha_bound |
the transparency parameter for the coinfidence bound |
title |
required title |
ylim |
if the y limit should be different from the default max(y)+.1 |
... |
extra GAMLSS models |
A worm plot is produced
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
van Buuren and Fredriks M. (2001) Worm plot: simple diagnostic device for modelling growth reference curves. Statistics in Medicine, 20, 1259–1277
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
data(abdom) # with data a<-gamlss(y~pb(x),sigma.fo=~pb(x,1),family=LO,data=abdom) resid_wp(a) resid_wp(resid=resid(a))
data(abdom) # with data a<-gamlss(y~pb(x),sigma.fo=~pb(x,1),family=LO,data=abdom) resid_wp(a) resid_wp(resid=resid(a))
All plots are of the response variable against fitted values of interest.
The function resp_mu()
is the ‘original’ one plotting the response against the parameter mu
. The function reports the Pearson's correlation coefficient and plot a lines (45% degrees) throught the graph.
The function resp_param()
plots the response against any fitted parameter mu
, sigma
, nu
or tau
. The function also plots a smooth curve going throught the data and gives the Pearson's correlation coefficient.
The function resp_quantile()
plots the response against any fitted quantile, with default the median (0.50). The function also plots a smooth curve going throught the data and gives the Pearson's correlation coefficient.
The function quantile_gamlss()
is used by the function resp_quantile()
to calculate the quantiles of the fitted distribution .
resp_mu(obj, title, line.col = "darkred", point.col = "steelblue4", point.shape = 20) resp_param(obj, param = c("mu", "sigma", "nu", "tau"), title, line.col = "darkred", point.col = "steelblue4", point.shape = 20) resp_quantile(obj, quantile = 0.5, title, newdata, line.col = "darkred", point.col = "steelblue4", point.shape = 20) quantile_gamlss(obj, quantile = 0.5, newdata)
resp_mu(obj, title, line.col = "darkred", point.col = "steelblue4", point.shape = 20) resp_param(obj, param = c("mu", "sigma", "nu", "tau"), title, line.col = "darkred", point.col = "steelblue4", point.shape = 20) resp_quantile(obj, quantile = 0.5, title, newdata, line.col = "darkred", point.col = "steelblue4", point.shape = 20) quantile_gamlss(obj, quantile = 0.5, newdata)
obj |
a GAMLSS fitted object |
param |
which parameters? |
quantile |
which quantile? default the median (0.50), [only for |
title |
a tittle if needed it, by default for the function |
line.col |
the colour of the line |
point.col |
the colour of the points |
point.shape |
the shape of the points |
newdata |
whether the evaluation should be in newdata or the old data points [only for functions |
This is standard plot in regression where the fitted values are plotted against the response. In GAMLSS model is done by plotting the response against the fitted values of the mu
model which is most case is a location parameter.
A plot is returned
Do not use this plot if mu
is not a location parameter.
Mikis Stasinopulos, Rober Rigby and Fernanda de Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
m1 <- gamlss(R~pb(Fl)+pb(A)+H+loc, data=rent, family=GA ) resp_mu(m1) resp_param(m1) resp_quantile(m1)
m1 <- gamlss(R~pb(Fl)+pb(A)+H+loc, data=rent, family=GA ) resp_mu(m1) resp_param(m1) resp_quantile(m1)
The function y_hist()
creates a histogram and a density plot for a continuous variable.
The functions y_acf()
and y_pacf()
plot the autocorrolation and partial autocorrolation functions for y.
The function y_dots()
is design for long tail right skewed variables. It is a plot emphasising the right tail of the distribution for such variables.
y_hist(y, data, with.density = TRUE, hist.col = "black", hist.fill = "white", dens.fill = "#FF6666", binwidth = (max(y)-min(y))/20, from, to, title) y_acf(x, data, title) y_pacf(x, data, title) y_dots(y, data, value=3, point.size = 2, point.col = "gray", quantile = c(.10, .50, .90), line.col = c("black","red", "black"), line.type = c("dotted", "solid", "dotted"), line.size = c(1,1,1), x.axis.col = "black", x.axis.line.type = "solid", seed = 123, from, to, title)
y_hist(y, data, with.density = TRUE, hist.col = "black", hist.fill = "white", dens.fill = "#FF6666", binwidth = (max(y)-min(y))/20, from, to, title) y_acf(x, data, title) y_pacf(x, data, title) y_dots(y, data, value=3, point.size = 2, point.col = "gray", quantile = c(.10, .50, .90), line.col = c("black","red", "black"), line.type = c("dotted", "solid", "dotted"), line.size = c(1,1,1), x.axis.col = "black", x.axis.line.type = "solid", seed = 123, from, to, title)
y , x
|
a continuous variable |
data |
where to find argument y |
value |
value to identify outliers i.e. for upper tail an outliers is if it is greater than Q_3+value*IQ |
with.density |
whether a density is required, default is |
hist.col |
the colour of lines of the histogram |
hist.fill |
the colour of the histogram |
dens.fill |
the color of the density plot |
binwidth |
the binwidth for the histogram |
from |
where to start the histogram (you may have to change
|
to |
where to finish the histogram (you may have to change
|
point.size |
the size of the points in |
point.col |
the colour of the points in |
quantile |
the quantile values to plot in |
line.col |
the color of the vertical lines indicating the 0.10, .50 and .90 quantiles in |
line.type |
the type of the verical lines indicationg the 0.10, .50 and .90 quantiles in |
line.size |
the size of the verical lines indication the 0.10, .50 and .90 quantiles in |
x.axis.col |
the colour of the x-axis |
x.axis.line.type |
the type of the x-axix |
seed |
the seed to jitter the y |
title |
use this for a different title |
A ggplot is returned
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
library(ggplot2) y <- rBCT(1000, mu=3, sigma=.1, nu=-1, tau=5) y_hist(y) gg <- y_hist(y, with.dens=FALSE) gg + stat_function(fun = dBCT, args=list(mu=3, sigma=.1, nu=-1, tau=5), colour = "black") gg + stat_function(fun = dBCT, args=list(mu=3, sigma=.1, nu=-1, tau=5), geom = "area", alpha=0.5, fill="pink", color="black", n=301) y_acf(diff(EuStockMarkets[,1])) y_dots(rent$R)
library(ggplot2) y <- rBCT(1000, mu=3, sigma=.1, nu=-1, tau=5) y_hist(y) gg <- y_hist(y, with.dens=FALSE) gg + stat_function(fun = dBCT, args=list(mu=3, sigma=.1, nu=-1, tau=5), colour = "black") gg + stat_function(fun = dBCT, args=list(mu=3, sigma=.1, nu=-1, tau=5), geom = "area", alpha=0.5, fill="pink", color="black", n=301) y_acf(diff(EuStockMarkets[,1])) y_dots(rent$R)